Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (10): 3303-3311.doi: 10.12305/j.issn.1001-506X.2024.10.08
• Sensors and Signal Processing • Previous Articles
Fatong ZHANG, Yaowen FU, Wei YANG, Wenpeng ZHANG, Shangqu YAN
Received:2023-02-28
Online:2024-09-25
Published:2024-10-22
Contact:
Yaowen FU
CLC Number:
Fatong ZHANG, Yaowen FU, Wei YANG, Wenpeng ZHANG, Shangqu YAN. Wide-beam motion compensation algorithm for micro-UAV FMCW SAR[J]. Systems Engineering and Electronics, 2024, 46(10): 3303-3311.
| 1 | 张健丰, 付耀文, 张文鹏, 等. 圆迹合成孔径雷达成像技术综述[J]. 系统工程与电子技术, 2020, 42 (12): 2716- 2734. |
| ZHANG J F , FU Y W , ZHANG W P , et al. Review of CSAR imaging techniques[J]. Systems Engineering and Electronics, 2020, 42 (12): 2716- 2734. | |
| 2 | 段佳, 曹兰英, 吴亿锋. 基于属性散射中心的SAR成像方法[J]. 系统工程与电子技术, 2021, 43 (10): 2782- 2788. |
| DUAN J , CAO L Y , WU Y F . Imaging algorithm for SAR based on attributed scattering center models[J]. Systems Engineering and Electronics, 2021, 43 (10): 2782- 2788. | |
| 3 | ZHANG F T, FU Y W, YU R F, et al. A modified fast back-projection algorithm for mini-UAV borne FMCW SAR imaging[C]//Proc. of the 2nd International Conference on Electronic Information Engineering and Computer Technology, 2022: 415-419. |
| 4 | 朱岱寅, 张营, 俞翔, 等. 微型合成孔径雷达成像信号处理技术[J]. 雷达学报, 2019, 8 (6): 793- 803. |
| ZHU D Y , ZHANG Y , YU X , et al. Imaging signal processing technology for miniature synthetic aperture radar[J]. Journal of Radars, 2019, 8 (6): 793- 803. | |
| 5 | LUOMEI Y X, XU F. Motion compensation for multirotors mini SAR system[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2021. |
| 6 | XU W D , WANG B N , XIANG M S , et al. A novel autofocus framework for UAV SAR imagery: motion error extraction from symmetric triangular FMCW differential signal[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5218915. |
| 7 | 李悦丽, 李泽森, 王建, 等. 多旋翼无人机载SAR的视线运动误差修正与补偿[J]. 雷达学报, 2022, 11 (6): 1061- 1080. |
| LI Y L , LI Z S , WANG J , et al. Modification and compensation of the line-of-sight motion error for multirotor UAV SAR[J]. Journal of Radars, 2022, 11 (6): 1061- 1080. | |
| 8 | PALM S , SOMMER R , JANSSEN D , et al. Airborne circular W-band SAR for multiple aspect urban site monitoring[J]. IEEE Trans.on Geoscience & Remote Sensing, 2019, 57 (9): 6996- 7016. |
| 9 |
KIM S , JEON S Y , KIM J B , et al. Multichannel W-band SAR system on a multirotor UAV platform with real-time data transmission capabilities[J]. IEEE Access, 2020, 8, 144413- 144431.
doi: 10.1109/ACCESS.2020.3014700 |
| 10 | ALI B , MICHAIL A , CHRISTOPHER B J . Low-cost, high-resolution, drone-borne SAR imaging[J]. IEEE Trans.on Geoscience & Remote Sensing, 2022, 60 (1): 5208811. |
| 11 | 邢涛, 舒奂泽, 胡庆荣, 等. 修正的垂直航向运动补偿算法[J]. 系统工程与电子技术, 2015, 37 (12): 2751- 2757. |
| XING T , SHU H Z , HU Q R , et al. Refined cross-track motion compensation algorithm[J]. Systems Engineering and Electronics, 2015, 37 (12): 2751- 2757. | |
| 12 |
PRATS P , CAMARA-DE-MACEDO K A , REIGBER A . Comparison of topography and aperture-dependent motion compensation algorithms for airborne SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4 (3): 349- 353.
doi: 10.1109/LGRS.2007.895712 |
| 13 |
CHEN J L , ZHANG J C , YU H W , et al. Blind NCS-based autofocus for airborne wide-beam SAR imaging[J]. IEEE Trans.on Computational Imaging, 2022, 8, 626- 638.
doi: 10.1109/TCI.2022.3194745 |
| 14 | 黄源宝, 保铮, 周峰. 一种新的机载条带式SAR沿航向运动补偿方法[J]. 电子学报, 2005, 33 (3): 459- 462. |
| HUANG Y B , BAO Z , ZHOU F . A novel method for along-track motion compensation of the airborne strip-map SAR[J]. Acta Electronica Sinica, 2005, 33 (3): 459- 462. | |
| 15 |
FORNADO G . Trajectory deviations in airborne SAR: analysis and compensation[J]. IEEE Trans.on Aerospace and Electronic Systems, 1999, 35 (3): 997- 1009.
doi: 10.1109/7.784069 |
| 16 | 安道祥, 黄晓涛, 李欣, 等. 机载超宽带SAR运动补偿方法[J]. 信号处理, 2011, 27 (1): 73- 80. |
| AN D X , HUANG X T , LI X , et al. Motion compensation method of airborne ultra-wideband SAR[J]. Journal of Signal Processing, 2011, 27 (1): 73- 80. | |
| 17 | MENG D D , HU D H , DING C B . A new approach to airborne high resolution SAR motion compensation for large trajectory deviations[J]. Chinese Journal of Electronics, 2012, 21 (4): 764- 769. |
| 18 | 黎涛, 付耀文, 张健丰, 等. 多旋翼无人机载SAR视线向运动误差补偿方法[J]. 信号处理, 2022, 38 (3): 491- 501. |
| LI T , FU Y W , ZHANG J F , et al. A method of line-of-sight motion error compensation for multi-rotor UAV SAR[J]. Journal of Signal Processing, 2022, 38 (3): 491- 501. | |
| 19 |
DE-MACEDO K A C , SCHEIBER R . Precise topography-and aperture-dependent motion compensation for airborne SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2 (2): 172- 176.
doi: 10.1109/LGRS.2004.842465 |
| 20 | ZHENG X S, YU W D, LI Z S. A novel algorithm for wide beam SAR motion compensation based on frequency division[C]//Proc. of the IEEE International Symposium on Geoscience and Remote Sensing, 2006: 3160-3163. |
| 21 |
LI Y L , LIANG X D , DING C B , et al. Improvements to the frequency division-based subaperture algorithm for motion compensation in wide-beam SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10 (5): 1219- 1223.
doi: 10.1109/LGRS.2012.2236817 |
| 22 |
PRATS P , REIGBER A , MALLORQUI J . Topo-graphy-dependent motion compensation for repeat-pass interferometric SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2 (2): 206- 210.
doi: 10.1109/LGRS.2005.846005 |
| 23 | ZHANG L , WANG G Y , QIAO Z J , et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 10 (1): 184- 193. |
| 24 | MENG Z C , ZHANG L , LI J , et al. Time-domain azimuth-variant MOCO algorithm for airborne SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4508605. |
| 25 | 贾高伟, 常文革. FMCW SAR运动补偿处理技术研究[J]. 电子学报, 2013, 41 (9): 1665- 1671. |
| JIA G W , CHANG W G . Analysis of motion compensation for FMCW synthetic aperture radar[J]. Acta Electronica Sinica, 2013, 41 (9): 1665- 1671. | |
| 26 | 贾高伟, 常文革. 高分辨率UAV SAR的三维运动误差分离与补偿[J]. 国防科技大学学报, 2014, 36 (4): 71- 76. |
| JIA G W , CHANG W G . Three dimensional motion error correction for unmanned aerial vehicle synthetic aperture radar[J]. Journal of National University of Defense Technology, 2014, 36 (4): 71- 76. | |
| 27 | CHEN J L , LIANG B G , YANG D G , et al. Two-step accuracy improvement of motion compensation for airborne SAR with ultrahigh resolution and wide swath[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (9): 7148- 7160. |
| 28 | FORNARO G . Trajectory deviations in airborne SAR: analysis and compensation[J]. IEEE Trans.on Aerospace and Electronic Systems, 1999, 35 (3): 997- 1009. |
| 29 | 安道祥, 黄晓涛, 周智敏. 机载超宽带SAR运动误差建模与分析[J]. 国防科技大学学报, 2011, 33 (1): 65- 71. |
| AN D X , HUANG X T , ZHOU Z M . Modeling and analysis of motion errors of airborne ultra-wide band SAR[J]. Journal of National University of Defense Technology, 2011, 33 (1): 65- 71. | |
| 30 | 庄龙, 许道宝. 低波段大波束角SAR脉冲响应函数特性研究[J]. 现代雷达, 2019, 41 (3): 36- 41. |
| ZHUANG L , XU D B . A study on impulse response function for low-frequency wide-beam SAR[J]. Modern Radar, 2019, 41 (3): 36- 41. |
| [1] | Shangqu YAN, Yaowen FU, Wenpeng ZHANG, Wei YANG, Ruofeng YU, Fatong ZHANG. Review of the development status for ViSAR techniques [J]. Systems Engineering and Electronics, 2024, 46(8): 2650-2666. |
| [2] | Jin WANG, Xiangguang LENG, Zhongzhen SUN, Xiaojie MA, Yang YANG, Kefeng JI. Study of space/time varying defocus characteristics of complex moving ship targets in SAR imaging [J]. Systems Engineering and Electronics, 2024, 46(7): 2237-2255. |
| [3] | Shiqi XING, Penghui JI, Dahai DAI, Dejun FENG. Influence of azimuth-modulation jamming on high-resolution wide-swath multi-channel SAR [J]. Systems Engineering and Electronics, 2024, 46(6): 1946-1956. |
| [4] | Ding ZENG, Junjun YIN, Jian YANG. Nonlocal means filter for polarimetric SAR images based on fusion distance [J]. Systems Engineering and Electronics, 2024, 46(5): 1493-1502. |
| [5] | Zikang SHAO, Xiaoling ZHANG, Tianwen ZHANG, Tianjiao ZENG. SAR ship detection based on adaptive anchor and multi-scale enhancement [J]. Systems Engineering and Electronics, 2024, 46(4): 1204-1211. |
| [6] | Tianwen ZHANG, Xiaoling ZHANG, Zikang SHAO, Tianjiao ZENG. Mask attention interaction for SAR ship instance segmentation [J]. Systems Engineering and Electronics, 2024, 46(3): 831-838. |
| [7] | Xiaoyu FANG, Lijia HUANG. SAR ship detection algorithm based on global position information and fusion of residual feature [J]. Systems Engineering and Electronics, 2024, 46(3): 839-848. |
| [8] | Qi HU, Shaohai HU, Shuaiqi LIU. Ship detection in SAR image based on multi-layer saliency model [J]. Systems Engineering and Electronics, 2024, 46(2): 478-487. |
| [9] | Mingqian LIU, Zhongqiu XU, Tiancheng CHEN, Bingchen ZHANG, Yirong WU. Low oversampling Staggered SAR imaging method based on L1 & TV regularization [J]. Systems Engineering and Electronics, 2023, 45(9): 2718-2726. |
| [10] | Zhongbao WANG, Kuiying YIN. Block effect suppression method of UAV-borne SAR image based on joint domain filtering [J]. Systems Engineering and Electronics, 2023, 45(9): 2768-2776. |
| [11] | Ning WANG, Pengchao HE, Jingyue LU, Xi LIU. DOA estimation based imaging method for multi-channel forward-looking SAR [J]. Systems Engineering and Electronics, 2023, 45(8): 2471-2478. |
| [12] | Pengfei WANG, Hengyi ZHAN, Hongzhong SUN. Two-dimensional spatial-variant compensation frequency domain imaging method for bistatic forward-looking radar [J]. Systems Engineering and Electronics, 2023, 45(7): 1990-2001. |
| [13] | Junpeng WANG, Shiqi XING, Yongzhen LI, Datong HUANG, Shaoqiu SONG. FMCW SAR jamming method research based on time-frequency cross [J]. Systems Engineering and Electronics, 2023, 45(6): 1651-1657. |
| [14] | Dongdong ZHANG, Chunping WANG, Qiang FU. Ship target detection in SAR image based on feature-enhanced network [J]. Systems Engineering and Electronics, 2023, 45(4): 1032-1039. |
| [15] | Xianghai LI, Zhiwei YANG, Shun HE, Guisheng LIAO, Chaolei HAN, Yan JIANG. Method for SAR-GMTI moving target radial velocity estimation and relocation based on road network information assistance in multi-satellite formation system [J]. Systems Engineering and Electronics, 2023, 45(3): 629-637. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||