Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (9): 2706-2717.doi: 10.12305/j.issn.1001-506X.2023.09.08
• Sensors and Signal Processing • Previous Articles Next Articles
Rui LI, Mengtao ZHU, Yunjie LI
Received:
2022-01-24
Online:
2023-08-30
Published:
2023-09-05
Contact:
Yunjie LI
CLC Number:
Rui LI, Mengtao ZHU, Yunjie LI. Online evaluation method of radar jamming effect based on inverse filtering processing[J]. Systems Engineering and Electronics, 2023, 45(9): 2706-2717.
22 |
KRISHNAMURTHY V , RANGASWAMY M . How to calibrate your adversary's capabilities? Inverse filtering for counter-autonomous systems[J]. IEEE Trans.on Signal Processing, 2019, 67 (24): 6511- 6525.
doi: 10.1109/TSP.2019.2956676 |
23 |
KUPTAMETEE C , AUNSRI N . A review of resampling techniques in particle filtering framework[J]. Measurement, 2022, 193, 110836.
doi: 10.1016/j.measurement.2022.110836 |
24 |
XIE Z , ZHU J H , FAN C Y , et al. Robust range ambiguous deceptive target suppression based on covariance matrix reconstruction[J]. Remote Sensing, 2021, 13 (12): 2346.
doi: 10.3390/rs13122346 |
25 |
马定坤, 匡银, 杨新权. 侦干探通一体化现状与关键技术研究[J]. 中国电子科学研究院学报, 2016, 11 (5): 457- 462.
doi: 10.3969/j.issn.1673-5692.2016.05.001 |
MA D K , KUANG Y , YANG X Q . Key issues and status research of integrated reconnaissance, inteference, detection and communications[J]. Journal of China Academy of Electronic and Information Technology, 2016, 11 (5): 457- 462.
doi: 10.3969/j.issn.1673-5692.2016.05.001 |
|
26 | HE S , SHIN H S , TSOURDOS A . Distributed joint probabilistic data association filter with hybrid fusion strategy[J]. IEEE Trans.on Instrumentation and Measurement, 2019, 69 (1): 286- 300. |
27 |
王宏强, 秦玉亮, 李宏, 等. 修正的PDA算法[J]. 信号处理, 2009, 25 (3): 430- 434.
doi: 10.3969/j.issn.1003-0530.2009.03.017 |
WANG H Q , QIN Y L , LI H , et al. Modified PDA algorithm and performance prediction[J]. Journal of Signal Processing, 2009, 25 (3): 430- 434.
doi: 10.3969/j.issn.1003-0530.2009.03.017 |
|
28 |
KERSHAW D J , EVANS R J . Optimal waveform selection for tracking systems[J]. IEEE Trans.on Information Theory, 1994, 40 (5): 1536- 1550.
doi: 10.1109/18.333866 |
29 | 何友, 修建娟, 张晶炜, 等. 雷达数据处理及应用[M]. 2版 北京: 电子工业出版社, 2009. |
HE Y , XIU J J , ZHANG J W , et al. Radar data processing with applications[M]. 2nd ed Beijing: Publishing House of Electronics Industry, 2009. | |
1 | LI X, LIU D S. Modeling method of combat mission based on OODA loop[C]//Proc. of the MATEC Web of Conferences, 2022. |
2 |
CHU J Y , XIAO N , LIANG J . Jamming effect evaluation method based on radar behavior recognition[J]. Journal of Physics: Conference Series, 2020, 1629 (1): 012001.
doi: 10.1088/1742-6596/1629/1/012001 |
3 | JIN Y C , JIANG J P , ZHU J . Neural network based fuzzy identification and its application to modeling and control of complex systems[J]. IEEE Trans.on Systems, Man and Cybernetics, 1995, 26 (5): 990- 997. |
4 |
KWON H M , SCHAEFER L T . Neural network applications for jamming state information generator[J]. IEEE Trans.on Neural Networks, 1994, 5 (5): 833- 837.
doi: 10.1109/72.317735 |
5 |
李潮, 周金泉. 基于干扰方的干扰效果评估研究[J]. 电子信息对抗技术, 2008, 23 (2): 46- 49.
doi: 10.3969/j.issn.1674-2230.2008.02.012 |
LI C , ZHOU J Q . Jamming effectiveness evaluation from the Jaming side[J]. Electronic Information Warfare Technology, 2008, 23 (2): 46- 49.
doi: 10.3969/j.issn.1674-2230.2008.02.012 |
|
6 | OU J, ZHAO F, AI X F, et al. Quantitative evaluation for self-screening jamming effectiveness based on the changing characteristics of intercepted radar signals[C]//Proc. of the IEEE CIE International Conference on Radar, 2016. |
7 | 翁鑫锦. 基于机器学习的雷达干扰效能评估[D]. 成都: 电子科技大学, 2019. |
WENG X J. Effectiveness evaluation of radar jamming based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019. | |
8 |
KALMAN R E . When is a linear control system optimal[J]. Journal of Basic Engineering, 1964, 86 (1): 51- 60.
doi: 10.1115/1.3653115 |
9 | ZHAO C Y , WANG Q , LIU X F , et al. Reinforcement learning based a non-zero-sum game for secure transmission against smart jamming[J]. Digital Signal Processing, 2021, 112 (12): 103002. |
10 | CHOI J, KIM K E. Nonparametric Bayesian inverse reinforcement learning for multiple reward functions[C]//Proc. of the 25th International Conference on Neural Information Processing Systems, 2015: 305-313. |
11 | KLEIN E, GEIST M, PIOT B, et al. Inverse reinforcement learning through structured classification[C]//Proc. of the Advances in Neural Information Processing Systems, 2012. |
12 |
ARORA S , DOSHI P . A survey of inverse reinforcement learning: challenges, methods and progress[J]. Artificial Intelligence, 2021, 297, 103500.
doi: 10.1016/j.artint.2021.103500 |
13 |
PERRUSQUIA A . A complementary learning approach for expertise transference of human-optimized controllers[J]. Neural Networks, 2022, 145, 33- 41.
doi: 10.1016/j.neunet.2021.10.009 |
14 |
KRISHNAMURTHY V , ANGLEY D , EVANS R , et al. Identifying cognitive radars inverse reinforcement learning using revealed preferences[J]. IEEE Trans.on Signal Processing, 2020, 68, 4529- 4542.
doi: 10.1109/TSP.2020.3013516 |
15 |
KRISHNAMURTHY V , PATTANAYAK K , GOGINENI S , et al. Adversarial radar inference: inverse tracking, identifying cognition, and designing smart interference[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (4): 2067- 2081.
doi: 10.1109/TAES.2021.3090901 |
16 | MATTILA R, ROJAS C R, KRISHNAMURTHY V, et al. Inverse filtering for linear Gaussian state-space models[C]//Proc. of the IEEE Conference on Decision and Control, 2018: 5556-5561. |
17 | GUSTAFSSON F . Adaptive filtering and change detection[M]. New York: Wiley, 2000. |
18 | CHEN J , PATTON R J . Robust model-based fault diagnosis for dynamic systems[M]. Boston: Springer Science & Business Media, 2012. |
19 | ANDERSON B , MOORE J B , ESLAMI M . Optimal filtering[J]. IEEE Trans.on Systems, Man and Cybernetics, 2007, 12 (2): 235- 236. |
20 | MATTILA R, ROJAS C R, KRISHNAMURTHY V, et al. Inverse filtering for hidden Markov models[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017. |
21 |
MATTILA R , ROJAS C R , KRISHNAMURTHY V , et al. Inverse filtering for hidden Markov models with applications to counter-adversarial autonomous systems[J]. IEEE Trans.on Signal Processing, 2020, 68, 4987- 5002.
doi: 10.1109/TSP.2020.3019177 |
30 | 贾瑞. 雷达距离门拖引干扰策略智能生成方法研究[D]. 成都: 电子科技大学, 2021. |
JIA R. Research on intelligent generation method of radar range gate pull of jamming strategy[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
31 | 陈玉文, 童幼堂. 卡尔曼滤波法抗距离拖引干扰研究[J]. 飞航导弹, 2000, (3): 50- 51. |
CHEN Y W , TONG Y T . Researoh on Kalman filter method for antirange dragging interference[J]. Aerospace Technology, 2000, (3): 50- 51. | |
32 |
WEISS M , SHIMA T . Optimal linear-quadratic missile gui-dance laws with penalty on command variability[J]. Journal of Guidance, Control, and Dynamics, 2015, 38 (2): 226- 237.
doi: 10.2514/1.G000738 |
33 | HULL D G , SPEYER J L , BURRIS D B . Linear-quadratic guidance law for dual control of homing missiles[J]. Journal of Guidance, Control and Dynamics, 2016, 13 (1): 137- 144. |
[1] | Dejiang LU, Xing WANG, You CHEN, Xing HU. Adaptive scheduling method of joint multi-resource for cooperative interference of networked radar system [J]. Systems Engineering and Electronics, 2023, 45(9): 2744-2754. |
[2] | Kang LIU, Minghao HE, Jun HAN, Mingyue FENG, Xinglin DU. Data fusion algorithm for radar countermeasures and reconnaissance based on multi-sensor [J]. Systems Engineering and Electronics, 2023, 45(1): 101-107. |
[3] | XING Qiang, JIA Xin, ZHU Weigang. Intelligent radar countermeasure based on Q-learning [J]. Systems Engineering and Electronics, 2018, 40(5): 1031-1035. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||