Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (8): 2570-2577.doi: 10.12305/j.issn.1001-506X.2023.08.32
• Guidance, Navigation and Control • Previous Articles Next Articles
Yushi JIANG1,*, Yang CHEN1, Lu GAO1, Ligen CAI1, Jixing LYU2
Received:
2022-04-06
Online:
2023-07-25
Published:
2023-08-03
Contact:
Yushi JIANG
CLC Number:
Yushi JIANG, Yang CHEN, Lu GAO, Ligen CAI, Jixing LYU. Predefined-time adaptive control for heavy-lift launch vehicles[J]. Systems Engineering and Electronics, 2023, 45(8): 2570-2577.
1 | HUANG H Q, SUN G H, ZHANG D, et al. Adaptive attitude control for a kind of heavy-lift launch vehicle based on super-twisting algorithm[C]//Proc. of the IEEE China Automation Congress, 2021: 3288-3293. |
2 | ZHANG L, WEI C Z, JING L, et al. Heavy lift launch vehicle technology of adaptive augmented fault tolerant control[C]//Proc. of the IEEE Chinese Guidance, Navigation and Control Conference, 2016: 1587-1593. |
3 |
ZHANG L , JU X Z , CUI N G . Ascent control of heavy-lift launch vehicle with guaranteed predefined performance[J]. Aerospace Science and Technology, 2021, 110, 106511.
doi: 10.1016/j.ast.2021.106511 |
4 |
NAIR A P , SELVAGANESAN N , LALITHAMBIKA V R . Lyapunov based PD/PID in model reference adaptive control for satellite launch vehicle systems[J]. Aerospace Science and Technology, 2016, 51, 70- 77.
doi: 10.1016/j.ast.2016.01.017 |
5 |
ARAQUE J P B , ZAVOLI A , TROTTA D , et al. Genetic algorithm based parameter tuning for robust control of launch vehicle in atmospheric flight[J]. IEEE Access, 2021, 9, 108175- 108189.
doi: 10.1109/ACCESS.2021.3099006 |
6 |
HE H X , DUAN H B . A multi-strategy pigeon-inspired optimization approach to active disturbance rejection control parameters tuning for vertical take-off and landing fixed-wing UAV[J]. Chinese Journal of Aeronautics, 2022, 35 (1): 19- 30.
doi: 10.1016/j.cja.2021.05.010 |
7 | YE L Q , TIAN B L , LIU H D , et al. Anti-windup robust backstepping control for an underactuated reusable launch vehicle[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2020, 52 (3): 1492- 1502. |
8 | ZHAO L B, ZHU G S, ZHUANG L, et al. Backstepping control for reentry vehicle improved by bioinspired neuro-dynamic[C]//Proc. of the IEEE 6th International Conference on Automation, Control and Robotics Engineering, 2021: 205-209. |
9 |
YOU M , ZONG Q , TIAN B L , et al. Nonsingular terminal sliding mode control for reusable launch vehicle with atmospheric disturbances[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232 (11): 2019- 2033.
doi: 10.1177/0954410017708211 |
10 |
ZHANG C F , ZHANG G S , DONG Q . Fixed-time disturbance observer-based nearly optimal control for reusable launch vehicle with input constraints[J]. ISA Transactions, 2022, 122, 182- 197.
doi: 10.1016/j.isatra.2021.04.031 |
11 | 李晓栋, 廖宇新, 廖俊, 等. 可重复使用运载火箭一子级垂直回收有限时间滑模控制[J]. 中南大学学报(自然科学版), 2020, 51 (4): 979- 988. |
LI X D , LIAO Y X , LIAO J , et al. Finite-time sliding mode control for vertical recovery of the first-stage of reusable rocket[J]. Journal of Central South University (Science and Technology), 2020, 51 (4): 979- 988. | |
12 | 吴燕生. 火箭大偏航入轨双回路扰动观测补偿有限时间收敛滑模控制[J]. 宇航总体技术, 2019, 3 (4): 1- 8. |
WU Y S . Double loop disturbance observer based finite time convergence sliding mode control for rocket orbital insertion with large yaw[J]. Astronautical Systems Engineering Technology, 2019, 3 (4): 1- 8. | |
13 | ZHANG L , WEI C Z , WU R , et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82, 70- 79. |
14 | ZENG T Y , REN X M , ZHANG Y . Fixed-time sliding mode control and high-gain nonlinearity compensation for dual-motor driving system[J]. IEEE Trans.on Industrial Informatics, 2019, 16 (6): 4090- 4098. |
15 |
WANG F , MIAO Y , LI C Y , et al. Attitude control of rigid spacecraft with predefined-time stability[J]. Journal of the Franklin Institute, 2020, 357 (7): 4212- 4221.
doi: 10.1016/j.jfranklin.2020.01.001 |
16 |
LIANG C D , GE M F , LIU Z W , et al. A novel sliding surface design for prede-fined-time stabilization of Euler-Lagrange systems[J]. Nonlinear Dynamics, 2021, 106 (1): 445- 458.
doi: 10.1007/s11071-021-06826-0 |
17 |
ZHANG L , JING L , YE L H , et al. Predefined-time control for a horizontal takeoff and horizontal landing reusable launch vehicle[J]. Aircraft Engineering and Aerospace Technology, 2021, 93 (6): 957- 970.
doi: 10.1108/AEAT-11-2020-0253 |
18 | MEI H T, GUO Y H, YANG J Y, et al. Adaptive fault tole-rant attitude control for heavy-lift launch vehicles with input nonlinearities[C]//Proc. of the IEEE 40th Chinese Control Conference, 2021: 7633-7638. |
19 |
JIMENEZ E , MUNOZ A J , SANCHEZ J D , et al. A Lyapunov-like characterization of predefined-time stability[J]. IEEE Trans.on Automatic Control, 2020, 65 (11): 4922- 4927.
doi: 10.1109/TAC.2020.2967555 |
20 | ZOU A M , FAN Z . Fixed-time attitude tracking control for rigid spacecraft without angular velocity measurements[J]. IEEE Trans.on Industrial Electronics, 2019, 67 (8): 6795- 6805. |
21 | XIE S E , CHEN Q . Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2021, 69 (1): 189- 193. |
22 | 姜博严. 二阶系统有限时间控制问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
JIANG B Y. Research on finite-time control problem for second order system[D]. Harbin: Harbin Institute of Techno-logy, 2018. | |
23 | CHEN Z , HUANG F H , CHEN W J , et al. RBFNN-based adaptive sliding mode control design for delayed nonlinear multilateral telerobotic system with cooperative manipulation[J]. IEEE Trans.on Industrial Informatics, 2019, 16 (2): 1236- 1247. |
24 |
GHELLAB M Z , ZEGHLACHE S , DJERIOUI A , et al. Experimental validation of adaptive RBFNN global fast dynamic terminal sliding mode control for twin rotor MIMO system against wind effects[J]. Measurement, 2021, 168, 108472.
doi: 10.1016/j.measurement.2020.108472 |
25 |
ZHAO Z J , WANG X G , ZHANG C L , et al. Neural network based boundary control of a vibrating string system with input deadzone[J]. Neurocomputing, 2018, 275, 1021- 1027.
doi: 10.1016/j.neucom.2017.09.050 |
26 | HAN Z G , ZHANG K , YANG T S , et al. Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode[J]. IET Control Theory & Applications, 2016, 10 (16): 1991- 1999. |
27 | XIA Y Q, ZHANG J H, LU K F, et al. Finite-time attitude control for rigid spacecraft based on adaptive super-twisting algorithm[M]// Oliver Jackson, ed. Finite Time and Cooperative Control of Flight Vehicles. Singapore: Springer, 2019: 117-140. |
28 |
ZHOU N , XIA Y Q , LU K F , et al. Decentralised finite-time attitude synchronisation and tracking control for rigid spacecraft[J]. International Journal of Systems Science, 2015, 46 (14): 2493- 2509.
doi: 10.1080/00207721.2013.868949 |
29 |
ZHOU N , XIA Y Q . Coordination control of multiple Euler-Lagrange systems for escorting mission[J]. International Journal of Robust and Nonlinear Control, 2015, 25 (18): 3596- 3616.
doi: 10.1002/rnc.3282 |
30 |
NAGESH I , EDWARDS C . A multivariable super-twisting sliding mode approach[J]. Automatica, 2014, 50 (3): 984- 988.
doi: 10.1016/j.automatica.2013.12.032 |
31 | 尤明. 可重复使用运载器固定时间姿态跟踪控制研究[D]. 天津: 天津大学, 2017. |
YOU M. Research on fixed-time attitude tracking control for reusable launch vehicle[D]. Tianjin: Tianjin University, 2017. |
[1] | Huiying WANG, Chunping WANG, Qiang FU, Zishuo HAN, Dongdong ZHANG. Infrared and low illumination image fusion based on image features [J]. Systems Engineering and Electronics, 2023, 45(8): 2395-2404. |
[2] | Fan YANG, Ping MA, Wei LI, Ming YANG. Intelligent ranking evaluation method of simulation models based on siamese network [J]. Systems Engineering and Electronics, 2023, 45(7): 2060-2068. |
[3] | Yu JIANG, Qi YUAN, Zhitao HU, Weiwei WU, Xin GU. Airport arrival and departure delay time prediction based on meteorological factors [J]. Systems Engineering and Electronics, 2023, 45(6): 1722-1731. |
[4] | Zehong DONG, Yinghui LI, Maolong LYU, Zhe LI, Binbin PEI. Singularity-free fixed-time adaptive switching control for hypersonic flight vehicle with input constraints [J]. Systems Engineering and Electronics, 2023, 45(5): 1476-1488. |
[5] | Zihan SHEN, Xiubin ZHAO, Chuang ZHANG, Liang ZHANG, Xinxian LIU. Adaptive fault-tolerant method based on long-short term memory neural network [J]. Systems Engineering and Electronics, 2023, 45(3): 831-838. |
[6] | Rui WANG, Tianqi ZHANG, Zeliang AN, Xueyi WANG, Zhu FANG. Modulation recognition algorithm for MIMO-OFDM system based on joint characteristic parameters and one-dimensional CNN [J]. Systems Engineering and Electronics, 2023, 45(3): 902-912. |
[7] | Xiaojia YAN, Weige LIANG, Gang ZHANG, Bo SHE, Fuqing TIAN. Prediction method for mechanical equipment based on RCNN-ABiLSTM [J]. Systems Engineering and Electronics, 2023, 45(3): 931-940. |
[8] | Shihui WU, Yu ZHOU, Zhengxin LI, Xiaodong LIU, Bo HE. Approach to simulation optimization of time-varying parameters system based on neural network [J]. Systems Engineering and Electronics, 2023, 45(2): 472-480. |
[9] | Botao SONG, Guangliang XU. Missile trajectory prediction method based on LSTM and 1DCNN [J]. Systems Engineering and Electronics, 2023, 45(2): 504-512. |
[10] | Xiuxia YANG, Zijie JIANG, Yi ZHANG, Cong WANG. Three dimensional real-time rolling optimal guidance strategy for maneuvering targets [J]. Systems Engineering and Electronics, 2023, 45(2): 546-558. |
[11] | Yuhang LUO, Yanxi CHEN, Kunyi GUO, Xinqing SHENG, Jing MA. Target parameter extraction based on neural network and scattering center model [J]. Systems Engineering and Electronics, 2023, 45(1): 9-14. |
[12] | Shuang SONG, Yue ZHANG, Linna ZHANG, Yigang CEN, Yidong LI. Lightweight target detection algorithm based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2716-2725. |
[13] | Qian NIE, Lihua YANG, Bo HU, Lulu REN. Time-varying channel prediction method based on LSTM neural networks under basis expansion model [J]. Systems Engineering and Electronics, 2022, 44(9): 2971-2977. |
[14] | Jian WANG, Zihao HE, Jie LIU, Ke YANG. Image fusion algorithm based on gradient domain guided filtering and improved PCNN [J]. Systems Engineering and Electronics, 2022, 44(8): 2381-2392. |
[15] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||