Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (9): 2914-2921.doi: 10.12305/j.issn.1001-506X.2022.09.26
• Guidance, Navigation and Control • Previous Articles Next Articles
Kexin ZHAO1,2,3, Qingbo GAN1,2,3,*, Zhitao YANG1,2,3, Jing LIU1,2,3
Received:2021-08-27
															
							
															
							
															
							
																	Online:2022-09-01
															
							
																	Published:2022-09-09
															
						Contact:
								Qingbo GAN   
																					CLC Number:
Kexin ZHAO, Qingbo GAN, Zhitao YANG, Jing LIU. Multiple-roots problem of initial orbit determination of near-Earth object and space target[J]. Systems Engineering and Electronics, 2022, 44(9): 2914-2921.
 
													
													Table 1
Apophis optical simulation observation data"
| 观测时刻 | MJD | 赤经/(°) | 赤纬/(°) | 地球X/AU | 地球Y/AU | 地球Z/AU | 
| t1 | 59 243.266 710 | 47.719 328 | 17.782 398 | -0.616 715 716 | 0.704 510 08 | 0.305 402 78 | 
| t2 | 59 253.277 130 | 37.983 650 | 14.938 175 | -0.743 577 968 | 0.594 637 62 | 0.257 776 60 | 
| t3 | 59 264.183 290 | 27.591 571 | 11.353 189 | -0.855 605 760 | 0.454 102 59 | 0.196 856 38 | 
 
													
													Table 3
Low Earthorbit object space-based optical simulation observation data"
| 观测时刻 | MJD | 赤经/(°) | 赤纬/(°) | 观测平台X/km | 观测平台Y/km | 观测平台Z/km | 
| t1 | 59 410.192 361 11 | 14.412 735 | -32.412 455 | -6 323.548 | -2 290.293 | 547.849 | 
| t2 | 59 410.194 444 44 | 12.478 481 | -29.897 754 | -5 779.067 | -3 482.275 | 115.328 | 
| t3 | 59 410.196 527 78 | 12.891 181 | -26.900 668 | -4 992.551 | -4 528.415 | -322.023 | 
| 1 | ESCOBAL P R . Methods of orbit determination[M]. Malabar: Krieger, 1976. | 
| 2 | VALLADO D A . Fundamentals of astrodynamics and applications[M]. 4th ed Hawthorne: Microcosm Press, 2013. | 
| 3 | GOODING R H. A new procedure for orbit determination based on three lines of sight (angles only), TR 93004[R]. Farnborough: Defence Research Agency Farnborough, 1993. | 
| 4 | GOODING R H . A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight[J]. Celestial Mechanics and Dynamical Astronomy, 1996, 66 (4): 387- 423. | 
| 5 | VALLADO D A. Evaluating gooding angles-only orbit determination of space based space surveillance measurements, USR 10-S4.5[R]. Colorado: Center for Space Standards and Innovation, 2010. | 
| 6 | KARIMI R R , MORTARI D . Initial orbit determination using multiple observations[J]. Celestial Mechanics & Dynamical Astronomy, 2011, 109 (2): 167- 180. | 
| 7 | 章品, 桑吉章, 潘腾, 等.  应用距离搜索的低轨空间碎片初始轨道确定方法[J]. 航天器工程, 2017, 26 (2): 22- 28. doi: 10.3969/j.issn.1673-8748.2017.02.004 | 
| ZHANG P ,  SANG J Z ,  PAN T , et al.  Initial orbit determination method based on rang searching for LEO space debris[J]. Spacecraft Engineering, 2017, 26 (2): 22- 28. doi: 10.3969/j.issn.1673-8748.2017.02.004 | |
| 8 | 雷祥旭, 桑吉章, 李振伟. LEO空间目标地基甚短弧角度数据初轨确定[J]. 测绘地理信息, 2019, 44 (2): 71- 73. | 
| LEI X X , SANG J Z , LI Z W . Initial orbit determination with very-short-arc observations of LEO object obtained from ground-based optical telescopes[J]. Journal of Geomatics, 2019, 44 (2): 71- 73. | |
| 9 | WISHNEK S ,  HOLZINGER M J ,  HANDLEY P , et al.  Robust initial orbit determination using streaks and admissible regions[J]. Journal of the Astronautical Sciences, 2021, 68, 349- 390. doi: 10.1007/s40295-021-00264-1 | 
| 10 | GRONCHI G F ,  BAU G ,  MILANI A .  Keplerian integrals, elimination theory and identification of very short arcs in a large database of optical observations[J]. Celestial Mechanics and Dynamical Astronomy, 2017, 127 (2): 211- 232. doi: 10.1007/s10569-016-9725-9 | 
| 11 | GRONCHI G F , BAÙ G , RODRÍGUEZ Ó , et al. Generalization of a method by Mossotti for initial orbit determination[J]. Celestial Mechanics and Dynamical Astronomy, 2021, 133 (9): 1- 21. | 
| 12 | ANSALONE L ,  CURTI F .  A genetic algorithm for initial orbit determination from a too short arc optical observation[J]. Advances in Space Research, 2013, 52 (3): 477- 489. doi: 10.1016/j.asr.2013.04.004 | 
| 13 | 李鑫冉, 赵海斌. 近地小行星极短弧定轨的进化算法研究[J]. 力学学报, 2021, 53 (3): 902- 911. | 
| LI X R , ZHAO H B . Study on evolutionary algorithms for initial orbit determination of near-earth asteroids with too-short-arc[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (3): 902- 911. | |
| 14 | 李鑫冉, 王歆. 基于遗传算法的极短弧定轨[J]. 天文学报, 2016, 57 (1): 66- 77. | 
| LI X R , WANG X . Genetic algorithm for initial orbit determination with too short arc[J]. Acta Astronomica Sinica, 2016, 57 (1): 66- 77. | |
| 15 | 李鑫冉, 王歆. 基于遗传算法的极短弧定轨(续)[J]. 天文学报, 2016, 57 (2): 181- 187. | 
| LI X R , WANG X . Genetic algorithm for initial orbit determination with too short arc (continued)[J]. Acta Astronomica Sinica, 2016, 57 (2): 181- 187. | |
| 16 | LI X R ,  WANG X ,  XIONG Y Q .  A combination method using evolutionary algorithms in initial orbit determination for too short arc[J]. Advances in Space Research, 2019, 63 (2): 999- 1006. doi: 10.1016/j.asr.2018.08.036 | 
| 17 | HU J , LI B Z , LI J . Initial orbit determination utilizing solution group optimization[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 55 (2): 897- 911. | 
| 18 | HANDLEY P M, HAGERTY S P. Initial orbit determination using simplex fusion[C]//Proc. of the IEEE Aerospace Confe-rence, 2020. | 
| 19 | CHARLIER C V L .  Second note on multiple solutions in the determinationof orbits from three observation[J]. Monthly Notices of the Royal Astronomical Society, 1911, 71, 454- 459. doi: 10.1093/mnras/71.5.454 | 
| 20 | CHARLIER C V L .  On multiple solutions in the determination of orbits from three observations[J]. Monthly Notices of the Royal Astronomical Society, 1910, 71, 120- 124. doi: 10.1093/mnras/71.2.120 | 
| 21 | DANBY J M A . Fundamentals of celestial mechanics, the macmillan company[M]. New York: Macmillan Collection, 1962. | 
| 22 | GRONCHI G F . Multiple solutions in preliminary orbit determination from three observations[J]. Celestial Mechanics & Dynamical Astronomy, 2009, 103 (4): 301- 326. | 
| 23 | DER G. New angles-only algorithms for initial orbit determination[C]//Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2012: 412-427. | 
| 24 | WIE B ,  AHN J .  On selecting the correct root of angles-only initial orbit determination equations of Lagrange, Laplace, and Gauss[J]. The Journal of the Astronautical Sciences, 2017, 64, 50- 71. doi: 10.1007/s40295-016-0097-x | 
| 25 | PRUSSING J E , CONWAY B A . Orbital mechanics[M]. New York: Oxford University Press, 1993. | 
| 26 | 甘庆波, 马静远, 陆本魁, 等. 一种基于星间方向观测的初轨计算方法[J]. 宇航学报, 2008, 28 (3): 619- 622. | 
| GAN Q B , MA J Y , LU B K , et al. An initial orbit determination method using inter satellite angle measurement[J]. Journal of Astronautics, 2008, 28 (3): 619- 622. | |
| 27 | KUZNETSOV V B .  Revisiting the determination of a preliminary orbit for a celestial body[J]. Solar System Research, 2019, 53 (6): 462- 472. doi: 10.1134/S0038094619060054 | 
| 28 | SHEFER V A .  New method of orbit determination from two position vectors based on solving Gauss's equations[J]. Solar System Research, 2010, 44 (3): 252- 266. doi: 10.1134/S003809461003007X | 
| 29 | KARIMI R R, MORTARI D. On Laplace's orbit determination method: some modifications[C]//Proc. of the AAS/AIAA Space Flight Mechanics Meeting, 2011. | 
| 30 | BINI D A .  Numerical computation of polynomial zeros by means of Aberth's method[J]. Numerical Algorithms, 1996, 13 (2): 179- 200. doi: 10.1007/BF02207694 | 
| [1] | Dawei LI, Jing LIU, Xiyan PENG, Yao ZHANG, Yanhao XIE. Initial orbit determination for a near-circular orbit of space debris with space-based short-arcs method and experiment [J]. Systems Engineering and Electronics, 2022, 44(8): 2601-2611. | 
| [2] | Tao JIN, Di ZHU, Jieying HE, Wenyu WANG. Study on the characteristics of high terahertz band atmospheric background radiation observed from satellites [J]. Systems Engineering and Electronics, 2022, 44(10): 3003-3011. | 
| [3] | ZHAO Huipeng, WANG Junling, GAO Meiguo, GUO Baofeng, MA Shaochuang. Bistatic ISAR envelope alignment algorithm based on orbit error search [J]. Systems Engineering and Electronics, 2017, 39(6): 1235-1243. | 
| [4] | YU Xiang, ZHU Daiyin, LI Junqiang, YUN Tao, HUANG Xiangfei. Range alignment algorithm based on the range migration trajectory for the space target ISAR [J]. Systems Engineering and Electronics, 2017, 39(4): 775-781. | 
| [5] | GUO Baofeng1,2, SHANG Chao-xuan1, WANG Jun-ling2, GAO Mei-guo2. Bistatic ISAR echo simulation of space target based on twobody model [J]. Systems Engineering and Electronics, 2016, 38(8): 1771-1779. | 
| [6] | ZHU Jiang, LIAO Gui-sheng, ZHU Sheng-qi. High precision range compression based on FrFT for space target imaging [J]. Systems Engineering and Electronics, 2015, 37(2): 271-277. | 
| [7] | ZHANG Jian, XI Xiao-liang, ZHOU Xiao-dong. Space target detection in star image based on motion information [J]. Systems Engineering and Electronics, 2014, 36(5): 838-845. | 
| [8] | DENG Xiao-bo,SHI Chang-hai,GAO Chao,YANG Jian. Subspace signal detection in compound Gaussian clutter [J]. Systems Engineering and Electronics, 2013, 35(9): 1836-1840. | 
| [9] | JIANG Wei-dong, CAO Min, NIE Lei, FU Yao-wen. Study on dynamic electromagnetic data simulation of space targets [J]. Journal of Systems Engineering and Electronics, 2009, 31(9): 2042-2045. | 
| [10] | YE You-shi, TANG Lin-bo, ZHAO Bao-jun, CAI Xiao-fang. Realtime deep space target track system based on SOPC [J]. Journal of Systems Engineering and Electronics, 2009, 31(12): 3002-3006. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||