Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (9): 2903-2913.doi: 10.12305/j.issn.1001-506X.2022.09.25
• Guidance, Navigation and Control • Previous Articles Next Articles
Geng XU*, Yongxu HE, Yonggang ZHANG
Received:2021-09-29
															
							
															
							
															
							
																	Online:2022-09-01
															
							
																	Published:2022-09-09
															
						Contact:
								Geng XU   
																					CLC Number:
Geng XU, Yongxu HE, Yonggang ZHANG. Inertial-frame-based transfer alignment using Rodriguez parameters[J]. Systems Engineering and Electronics, 2022, 44(9): 2903-2913.
 
													
													Table 4
Means and RMS of the estimate errors of the installation error angle (20~30 s) (°)"
| 传递对准算法 | 统计方法 | μxm | μym | μzm | 
| UKF-TA | 均值 | -3.507 0 | -1.340 9 | 0.127 8 | 
| RMS | 3.554 7 | 1.347 7 | 0.137 3 | |
| SVD-TA | 均值 | 3.531 8 | -9.124 3 | 1.933 7 | 
| RMS | 3.532 0 | 9.130 8 | 1.957 8 | |
| MKF-TA | 均值 | 1.566 6 | -3.078 3 | 0.241 0 | 
| RMS | 1.590 2 | 3.079 9 | 0.675 8 | |
| EKF-ITA | 均值 | 0.005 1 | -0.052 1 | -0.055 9 | 
| RMS | 0.031 1 | 0.056 5 | 0.062 9 | |
| UKF-ITA | 均值 | 0.013 6 | -0.050 9 | -0.057 5 | 
| RMS | 0.034 1 | 0.054 3 | 0.064 7 | 
| 1 | WU Y Y ,  WU M P ,  HU X P , et al.  Optimization-based alignment for inertial navigation systems: theory and algorithm[J]. Aerospace Science and Technology, 2011, 15 (1): 1- 17. doi: 10.1016/j.ast.2010.05.004 | 
| 2 | KANG T Z ,  FANG J C ,  WANG W .  Quaternion-optimization-based in-flight alignment approach for airborne POS[J]. IEEE Trans.on Instrumentation and Measurement, 2012, 61 (11): 2916- 2923. doi: 10.1109/TIM.2012.2202989 | 
| 3 | GROVES P D. Transfer alignment using an integrated INS/GPS as the reference[C]//Proc. of the 55th Annual Meeting of the Institute of Navigation, 1999: 731-737. | 
| 4 | GROVES P D, HADDOCK J. An all-purpose rapid transfer alignment algorithm set[C]//Proc. of the National Technical Meeting of the Institute of Navigation, 2001: 160-171. | 
| 5 | GROVES P D, WILSON G G, MATHER C J. Robust rapid transfer alignment with an INS/GPS reference[C]//Proc. of the National Technical Meeting of The Institute of Navigation, 2002: 301-311. | 
| 6 | GRAHAM W R, RABOURN C, SHORTELLE K J. Rapid alignment prototype (RAP) flight test demonstration[C]//Proc. of the National Technical Meeting of the Institute of Naviga-tion, 1998. | 
| 7 | GRAHAM W R, SHORTELLE K J, RABOURN C. F-16 flight tests of a rapid transfer alignment procedure[C]//Proc. of the IEEE Position Location and Navigation Symposium, 1996. | 
| 8 | WANG T D ,  CHENG J H ,  GUAN D X .  Modified compensation algorithm of lever-arm effect and flexural deformation for polar shipborne transfer alignment based on improved adaptive Kalman filter[J]. Measurement Science and Technology, 2017, 28 (9): 095101. doi: 10.1088/1361-6501/aa781a | 
| 9 | HUANG Y L ,  ZHANG Z ,  DU S Y , et al.  A high-accuracy GPS-aided coarse alignment method for MEMS-based SINS[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 69 (10): 7914- 7932. doi: 10.1109/TIM.2020.2983578 | 
| 10 | GROVES P D .  Optimising the transfer alignment of weapon INS[J]. Journal of Navigation, 2003, 56 (2): 323- 335. doi: 10.1017/S0373463303002261 | 
| 11 | LU J Z ,  XIE L L ,  LI B G .  Applied quaternion optimization method in transfer alignment for airborne AHRS under large misalignment angle[J]. IEEE Trans.on Instrumentation and Measurement, 2016, 65 (2): 346- 354. doi: 10.1109/TIM.2015.2502838 | 
| 12 | LU J Z , YE L L , DONG J . Applied singular value decomposition method in transfer alignment and bias calibration[J]. IET Radar, Sonar & Navigation, 2020, 14 (5): 700- 706. | 
| 13 | 崔潇, 秦永元, 严恭敏, 等.  任意失准角无奇异快速传递对准[J]. 宇航学报, 2018, 39 (10): 1127- 1133. doi: 10.3873/j.issn.1000-1328.2018.10.008 | 
| CUI X ,  QIN Y Y ,  YAN G M , et al.  Nonsingular rapid transfer alignment for SINS at random misalignment angles[J]. Journal of Astronautics, 2018, 39 (10): 1127- 1133. doi: 10.3873/j.issn.1000-1328.2018.10.008 | |
| 14 | BAZIW J , LEONDES C T . In-flight alignment and calibration of inertial measurement units, Part Ⅰ: general formulation[J]. IEEE Trans.on Aerospace and Electronic Systems, 1972, 8 (4): 439- 449. | 
| 15 | BAZIW J , LEONDES C T . In-flight alignment and calibration of inertial measurement units, Part Ⅱ: experimental results[J]. IEEE Trans.on Aerospace and Electronic Systems, 1972, 8 (4): 450- 465. | 
| 16 | KAIN J, CLOUTIER J. Rapid transfer alignment for tactical weapon applications[C]//Proc. of the AIAA Guidance, Navigation and Control Conference, 1989: 3581. | 
| 17 | XU G ,  HUANG Y L ,  GAO Z X , et al.  A computationally efficient variational adaptive Kalman filter for transfer alignment[J]. IEEE Sensors Journal, 2020, 20 (22): 13682- 13693. doi: 10.1109/JSEN.2020.3004621 | 
| 18 | GONG X L ,  FAN W ,  FANG J C .  An innovational transfer alignment method based on parameter identification UKF for airborne distributed POS[J]. Measurement, 2014, 58, 103- 114. doi: 10.1016/j.measurement.2014.08.034 | 
| 19 | ZOU S Y ,  LI J L ,  LU Z X .  A nonlinear transfer alignment of distributed POS based on adaptive second-order divided difference filter[J]. IEEE Sensors Journal, 2018, 18 (23): 9612- 9618. doi: 10.1109/JSEN.2018.2869979 | 
| 20 | CHENG J H ,  WANG T D ,  GUAN D X , et al.  Polar transfer alignment of shipborne SINS with a large misalignment angle[J]. Measurement Science and Technology, 2016, 27 (3): 035101. doi: 10.1088/0957-0233/27/3/035101 | 
| 21 | 严恭敏, 秦永元, 卫育新, 等.  一种适用于SINS动基座初始对准的新算法[J]. 系统工程与电子技术, 2009, 31 (3): 634- 637. doi: 10.3321/j.issn:1001-506X.2009.03.036 | 
| YAN G M ,  QIN Y Y ,  WEI Y X , et al.  New initial alignment algorithm for SINS on moving base[J]. Systems Engineering and Electronics, 2009, 31 (3): 634- 637. doi: 10.3321/j.issn:1001-506X.2009.03.036 | |
| 22 | 梅春波. 捷联惯性导航系统惯性系非线性初始对准技术研究[D]. 西安: 西北工业大学, 2016. | 
| MEI C B. Nonlinear initial alignment in inertial frame for SINS[D]. Xi'an: Northwestern Polytechnical University, 2016. | |
| 23 | CUI X ,  MEI C B ,  QIN Y Y , et al.  A unified model for transfer alignment at random misalignment angles based on second-order EKF[J]. Measurement Science and Technology, 2017, 28 (4): 045106. doi: 10.1088/1361-6501/aa5b75 | 
| 24 | MOCHALOV A V, PRIVALOV V E, KAZANTASEV A V. Use of the ring laser units for measurement of the moving object deformation[C]//Proc. of the 2nd International Conference on Lasers for Measurement and Information Transfer, 2002. | 
| 25 | 吕遐东, 刘佳铭, 姚腾钢. 船舶动态变形特性分析与测量方法研究[J]. 华中科技大学学报: 自然科学版, 2013, 41 (S1): 215- 218. | 
| LYU X D , LIU J M , YAO T G . Research on ship dynamic deformation characteristic analysis and measurement method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41 (S1): 215- 218. | |
| 26 | 李四海, 王珏, 刘镇波, 等. 快速传递对准中机翼弹性变形估计方法比较[J]. 中国惯性技术学报, 2014, 22 (1): 38- 44. | 
| LI S H , WANG J , LIU Z B , et al. Comparison of wing distortion estimation methods in transfer alignment[J]. Journal of Chinese Inertial Technology, 2014, 22 (1): 38- 44. | |
| 27 | WANG B ,  DENG Z H ,  LIU C , et al.  Estimation of information sharing error by dynamic deformation between inertial navi-gation systems[J]. IEEE Trans.on Industrial Electronics, 2014, 61 (4): 2015- 2023. doi: 10.1109/TIE.2013.2271595 | 
| 28 | 严恭敏, 李四海, 秦永元. 惯性仪器测试与数据分析[M]. 北京: 国防工业出版社, 2015: 136- 147. | 
| YAN G M , LI S H , QIN Y Y . Inertial instrument testing and data analysis[M]. Beijing: National Defense Industry Press, 2015: 136- 147. | |
| 29 | DAMBECK J ,  BLUM C .  Analytical assessment of the propagation of colored sensor noise in strapdown inertial navigation[J]. Sensors, 2020, 20 (23): 6914. doi: 10.3390/s20236914 | 
| 30 | FARRELL J A, SILVA F O, RAHMAN F, et al. IMU error modeling tutorial: INS state estimation with real-time sensor calibration[EB/OL]. [2021-11-06]. https://escholarship.org/uc/item/1vf7j52p. | 
| 31 | CUI X ,  YAN G M ,  FU Q W .  A unified nonsingular rapid transfer alignment solution for tactical weapon based on matrix Kalman filter[J]. IEEE Access, 2018, 6, 78700- 78709. doi: 10.1109/ACCESS.2018.2885144 | 
| 32 | WU Y X ,  PAN X F .  Velocity/position integration formula part Ⅰ: application to in-flight coarse alignment[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (2): 1006- 1023. doi: 10.1109/TAES.2013.6494395 | 
| 33 | CHOUKROUN D ,  WEISS H ,  BAR-ITZHACK I Y , et al.  Kalman filtering for matrix estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (1): 147- 159. doi: 10.1109/TAES.2006.1603411 | 
| 34 | 严恭敏, WANGJinling, 周馨怡. 基于实测轨迹的高精度捷联惯导模拟器[J]. 导航定位学报, 2015, 3 (4): 27- 31. | 
| YAN G M , WANG J L , ZHOU X Y . High-precision simulator for strapdown inertial navigation systems based on real dynamics[J]. Journal of Navigation and Positioning, 2015, 3 (4): 27- 31. | 
| [1] | Yang LI, Meng LIU, Jing GONG, Yongzhao WANG, Fujian DENG. Double-velocity inertial-frame alignment algorithm with pseudo INS modeling in polar regions [J]. Systems Engineering and Electronics, 2022, 44(5): 1677-1684. | 
| [2] | Shiwen HAO, Zhili ZHANG, Zhaofa ZHOU, Zhenjun CHANG, Xianyi LIU. Influence of gravity disturbance on initial alignment of inertial navigation system [J]. Systems Engineering and Electronics, 2020, 42(7): 1575-1581. | 
| [3] | Rongzong SHI, Chen MA, Zhengyu GUO. Application analysis of velocity matching algorithm in transfer alignment [J]. Systems Engineering and Electronics, 2020, 42(10): 2328-2333. | 
| [4] | JIANG Xiuhong, DUAN Fuhai, HU Ailing. Predictive maintenance for multistate system based on maintenance importance [J]. Systems Engineering and Electronics, 2018, 40(4): 839-844. | 
| [5] | FANG Min, CHENG Ziyang, HE Zishu, LI Jun. Multi-target paring algorithm for distributed radar with INS error [J]. Systems Engineering and Electronics, 2018, 40(2): 308-313. | 
| [6] | XIA Weixing, YANG Xiaodong. ESO estimation algorithm for gyro drift of INS [J]. Systems Engineering and Electronics, 2018, 40(12): 2804-2809. | 
| [7] | WANG Wei, GUO Huijie, MENG Yue. Satellite/pseudolite/INS integrated navigation algorithm [J]. Systems Engineering and Electronics, 2017, 39(2): 391-397. | 
| [8] | LI Ye1, GUO Jianguo1, ZHAO Bin1, YOU YuHua2, LU Xiaodong1, ZHOU Jun1. Aircraft dynamicsaided MEMS inertial navigation system [J]. Systems Engineering and Electronics, 2016, 38(8): 1880-1885. | 
| [9] | CHENG Jianhua, WANG Tongda, SONG Chunyu, YU Dongwei. Modified adaptive filter algorithm for shipborne SINS transfer alignment [J]. Systems Engineering and Electronics, 2016, 38(3): 638-643. | 
| [10] | DENG Zhi-hong, CAI Shan-bo, WANG Bo, FU Meng-yin. Compound rotation control algorithm for rotational INS [J]. Systems Engineering and Electronics, 2016, 38(11): 2610-2616. | 
| [11] | LIU Shuai, SUN Fu-ping, ZHANG Lun-dong. Research on the tight integration of ambiguity-fixed PPP and INS [J]. Systems Engineering and Electronics, 2016, 38(10): 2389-2394. | 
| [12] | GAO Wei1, SHAN Wei1, XU Bo1, CHENG Zhengsheng2. Transfer alignment of platform inertial navigation#br# in the inertial coordinate [J]. Systems Engineering and Electronics, 2015, 37(5): 1151-1156. | 
| [13] | CHENG Jian-hua, CHEN Dai-dai, WANG Bing-yu, WANG Tong-da. Approach of transfer alignment accuracy evaluation based on observability degree analysis [J]. Systems Engineering and Electronics, 2015, 37(4): 895-900. | 
| [14] | CONG Li, LI Er-cui, ZHANG Li-yang, QIN Hong-lei, XUE Rui. GPS/INS integrated navigation attitude determination method based on CLAMBDA and AFM aided by INS [J]. Systems Engineering and Electronics, 2015, 37(4): 882-887. | 
| [15] | LI Chan, YU Hao-zhang, ZHANG Shi-feng. Transfer alignment technology of the platform inertial navigation system [J]. Systems Engineering and Electronics, 2015, 37(12): 2823-2829. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||