Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (6): 1968-1976.doi: 10.12305/j.issn.1001-506X.2022.06.24
• Guidance, Navigation and Control • Previous Articles Next Articles
Ruiping JI1,2, Chengyi ZHANG1,2, Yan LIANG1,2,*, Yuedong WANG1,2
Received:
2021-08-16
Online:
2022-05-30
Published:
2022-05-30
Contact:
Yan LIANG
CLC Number:
Ruiping JI, Chengyi ZHANG, Yan LIANG, Yuedong WANG. Trajectory prediction of boost-phase ballistic missile based on LSTM[J]. Systems Engineering and Electronics, 2022, 44(6): 1968-1976.
Table 1
Nominal parameters for the boost-phase ballistic missile"
参数名称 | 取值 | |
环境参数 | 地球半径R/km | 6 378 |
地球自转角速度ω/(rad·s-1) | 7.29×10-5 | |
空气密度常数ρ0/(kg·m-3) | 1.22 | |
空气密度常数d/m-1 | 0.14×10-3 | |
地球重力常数μ/(Nm2·kg-1) | 3.99×1014 | |
弹道参数 | 火箭排气速度U/(m·s-1) | 2 700 |
归一化质量燃烧率q | 0.01 | |
弹道系数c/(kg·N-1) | 4 000 | |
主动段飞行时间/s | 70~110 | |
主动段飞行高度/km | 70~90 |
Table 5
Prediction performance analysis on the verification set under different network parameters"
变量名称 | 变量值 | |||||||
网络参数 | LSTM 1节点数 | 128 | 64 | 256 | 128 | 128 | 128 | 128 |
LSTM 2节点数 | 256 | 128 | 512 | 256 | 256 | 256 | 256 | |
LSTM 3节点数 | 256 | 128 | 512 | 256 | 256 | 256 | 256 | |
Maxout节点数 | 64 | 32 | 128 | 64 | 64 | 64 | 64 | |
小批量样本数 | 64 | 64 | 64 | 32 | 128 | 64 | 64 | |
训练迭代步数 | 50 000 | 50 000 | 50 000 | 50 000 | 50 000 | 25 000 | 100 000 | |
预报性能 | APRMSEx/m | 124.8 | 1 273.9 | 366.2 | 286.8 | 846.1 | 427.6 | 131 581.1 |
APRMSEy/m | 1 780.3 | 8 844.5 | 2 915.2 | 1 920.5 | 6 647.5 | 3 099.2 | 42 442.8 | |
APRMSEz/m | 846.8 | 6 599.5 | 1 348.2 | 3 691.6 | 3 302.2 | 1 535.8 | 8 494.9 | |
APRMSEvx/(m·s-1) | 4 | 29.1 | 12.4 | 12.1 | 19.1 | 24.3 | 56.8 | |
APRMSEvy/(m·s-1) | 24.5 | 126.8 | 96.3 | 57 | 81.2 | 70.1 | 471 | |
APRMSEvz/(m·s-1) | 16.2 | 90.7 | 41.1 | 29.5 | 47.1 | 59.6 | 207 | |
平均运行时间/s | 0.4 | 0.3 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 |
1 | 薛高茹, 梁彦, 谯平, 等. 基于EM的主动段弹道导弹跟踪算法研究[J]. 电子学报, 2017, 45 (7): 1770- 1774. |
XUE G R , LIANG Y , QIAO P , et al. Research on boost-phase ballistic missile tracking algorithm using EM[J]. Acta Electronica Sinica, 2017, 45 (7): 1770- 1774. | |
2 | 牛立强, 谢拥军, 张春刚, 等. 对抗环境下宙斯盾系统探测弹道导弹的仿真[J]. 系统工程与电子技术, 2019, 41 (6): 1195- 1201. |
NIU L Q , XIE Y J , ZHANG C G , et al. Detection simulation of AEGIS combat system for ballistic missile in electronic warfare environment[J]. Systems Engineering and Electronics, 2019, 41 (6): 1195- 1201. | |
3 | 范阳涛, 汪民乐, 朱亚红, 等. 基于分解协调法的弹道导弹突防效能控制优化[J]. 系统工程与电子技术, 2016, 38 (7): 1577- 1582. |
FAN Y T , WANG M L , ZHU Y H , et al. Optimal control of ballistic missile penetration effectiveness based on decomposition coordination[J]. Systems Engineering and Electronics, 2016, 38 (7): 1577- 1582. | |
4 | 赵依, 张洪波, 汤国建. 考虑星敏感器安装误差的弹道导弹捷联星光/惯性复合制导[J]. 航空学报, 2020, 41 (8): 114- 124. |
ZHAO Y , ZHANG H B , TANG G J . Strapdown stellar-inertial composite guidance method for ballistic missiles considering star sensor installation errors[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (8): 114- 124. | |
5 | NA H , LEE J I . Optimal arrangement of missile defense systems considering kill probability[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 56 (2): 972- 983. |
6 | JI R P , LIANG Y , XU L F , et al. Trajectory prediction of ballistic missiles using Gaussian process error model[J]. Chinese Journal of Aeronautics, 2021, 35 (1): 458- 469. |
7 |
BENAVOLI A , CHISCI L , FARINA A . Tracking of a ballistic missile with a-priori information[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (3): 1000- 1016.
doi: 10.1109/TAES.2007.4383589 |
8 | GENG L Y, WU N, MENG F K, et al. A analytical method of trajectory prediction considering J2 perturbations and including short-period terms[C]//Proc. of the 4th IEEE International Confe-rence on Control, Automation and Robotics, 2018: 498-503. |
9 |
HARLIN W J , CICCI D A . Ballistic missile trajectory prediction using a state transition matrix[J]. Applied Mathematics and Computation, 2007, 188 (2): 1832- 1847.
doi: 10.1016/j.amc.2006.11.048 |
10 | 张萍萍, 孙永侃, 林宗祥, 等. 基于多项式预测的导弹飞行轨迹预测方法[J]. 战术导弹技术, 2013, (2): 35- 37. 35-37, 55 |
ZHANG P P , SUN Y K , LIN Z X , et al. Method of flight trajectory prediction of a missile based on the polynomial prediction[J]. Tactical Missile Technology, 2013, (2): 35- 37. 35-37, 55 | |
11 |
SONG E J , TAHK M J . Three-dimensional midcourse guidance using neural networks for interception of ballistic targets[J]. IEEE Trans.on Aerospace and Electronic Systems, 2002, 38 (2): 404- 414.
doi: 10.1109/TAES.2002.1008975 |
12 |
ANN S , LEE S , KIM Y , et al. Midcourse guidance for exoatmospheric interception using response surface based trajectory shaping[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (5): 3655- 3673.
doi: 10.1109/TAES.2020.2976084 |
13 |
LYU S , ZHU Z H . Two-dimensional continuous terminal interception guidance law with predefined convergence perfor-mance[J]. IEEE Access, 2018, 6, 46771- 46780.
doi: 10.1109/ACCESS.2018.2865878 |
14 | 王君, 高晓光, 舒培贵. 防空导弹末段反导作战部署模型[J]. 现代防御技术, 2011, 39 (2): 22- 28. |
WANG J , GAO X G , SHU P G . Operational deployment model of ADM anti-BM in terminal phase[J]. Modern Defence Technology, 2011, 39 (2): 22- 28. | |
15 | 王伟林, 陈磊, 雷勇军. 弹道导弹中段诱饵微动特性研究[J]. 系统工程与电子技术, 2016, 38 (3): 487- 492. |
WANG W L , CHEN L , LEI Y J . Micro-motion analysis of decoy in midcourse of ballistic missile[J]. Systems Engineering and Electronics, 2016, 38 (3): 487- 492. | |
16 | 葛致磊, 李宪强, 郭锐. 弹道导弹主动段拦截导引律研究[J]. 西北工业大学学报, 2013, 31 (2): 239- 243. |
GE Z L , LI X Q , GUO R . Guidance laws for boost-phase interception of ballistic missile[J]. Journal of Northwestern Polytechnical University, 2013, 31 (2): 239- 243. | |
17 | WANG S S, FENG J F, WANG F N, et al. Near space interception of ballistic missiles during boost phase[C]//Proc. of the 2nd IEEE International Conference on Computing, Control and Industrial Engineering, 2011. |
18 | ZHANG J, YOU L, CHEN W C. Boost-phase guidance with neural network for interception of ballistic missile[C]//Proc. of the IEEE International Conference on Control, Automation and Information Sciences, 2015: 426-431. |
19 | 曹莉, 周亮, 耿斌斌, 等. 空基助推段反导拦截能力需求与仿真分析[J]. 空天防御, 2020, 3 (1): 87- 92. |
CAO L , ZHOU L , GENG B B , et al. Requirement and simulation analysis of anti-TBM in boost-phase based on airborne platform[J]. Air & Space Defense, 2020, 3 (1): 87- 92. | |
20 | 郭一鸣, 彭华, 杨勇. 基于前馈神经网络的非合作PCMA信号盲分离算法[J]. 电子学报, 2019, 47 (2): 302- 307. |
GUO Y M , PENG H , YANG Y . Blind separation algorithm for non-cooperative PCMA signal based on feedforward neural network[J]. Acta Electronica Sinica, 2019, 47 (2): 302- 307. | |
21 |
PESCE V , SILVESTRINI S , LAVAGNA M . Radial basis function neural network aided adaptive extended Kalman filter for spacecraft relative navigation[J]. Aerospace Science and Technology, 2020, 96, 105527.
doi: 10.1016/j.ast.2019.105527 |
22 | LIU J X , WANG Z L , XU M . DeepMTT: a deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network[J]. Information Fusion, 2020, 53 (1): 289- 304. |
23 | 胡晓月, 康凯, 钱骅, 等. 基于LSTM的LEO卫星链路自适应算法[J]. 系统工程与电子技术, 2020, 43 (1): 237- 243. |
HU X Y , KANG K , QIAN H , et al. Link adaption algorithm based on LSTM network for LEO satellite[J]. Systems Engineering and Electronics, 2020, 43 (1): 237- 243. | |
24 | 欧微, 柳少军, 贺筱媛, 等. 战场对敌目标战术意图智能识别模型研究[J]. 计算机仿真, 2017, 34 (9): 10- 14. 10-14, 19 |
OU W , LIU S J , HE X Y , et al. Study on the intelligent re-cognition model of enemy target's tactical intention on battlefield[J]. Computer Simulation, 2017, 34 (9): 10- 14. 10-14, 19 | |
25 | 张金凤, 何重阳, 梁彦. 面向再入目标跟踪的估计与辨识联合优化算法[J]. 航空学报, 2016, 37 (5): 1634- 1643. |
ZHANG J F , HE C Y , LIANG Y . Joint optimization algorithm of estimation and identification for reentry target tracking[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (5): 1634- 1643. | |
26 |
ENDER T , LEURCK R F , WEAVER B , et al. Systems-of-systems analysis of ballistic missile defense architecture effectiveness through surrogate modeling and simulation[J]. IEEE Systems Journal, 2010, 4 (2): 156- 166.
doi: 10.1109/JSYST.2010.2045541 |
27 | 张峰, 田康生, 息木林. 弹道导弹运动建模与跟踪研究[J]. 弹箭与制导学报, 2012, 32 (3): 53- 58. |
ZHANG F , TIAN K S , XI M L . The study on ballistic missile modeling and tracking[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32 (3): 53- 58. | |
28 | 周万幸. 弹道导弹雷达目标识别技术[M]. 北京: 电子工业出版社, 2011. |
ZHOU W X . BMD radar target recognition technology[M]. Bejing: Publishing House of Electronics Industry, 2011. | |
29 | GOODFELLOW I, WARDE-FARLEY D, MIRZA M, et al. Maxout networks[C]//Proc. of the PMLR International Conference on Machine Learning, 2013: 1319-1327. |
30 |
YI D , AHN J , JI S . An effective optimization method for machine learning based on ADAM[J]. Applied Sciences, 2020, 10 (3): 1073.
doi: 10.3390/app10031073 |
31 |
YOKOYAMA N . Parameter estimation of aircraft dynamics via unscented smoother with expectation-maximization algorithm[J]. Journal of Guidance, Control, and Dynamics, 2011, 34 (2): 426- 436.
doi: 10.2514/1.51696 |
32 |
SANKOWSKI M . Continuous-discrete estimation for tracking ballistic missiles in air-surveillance radar[J]. IET Radar Sonar and Navigation, 2011, 5 (9): 978- 986.
doi: 10.1049/iet-rsn.2011.0144 |
[1] | Zhaoguo HOU, Huawei WANG, Liang ZHOU, Qiang FU. Fault diagnosis of rotating machinery based on improved deep residual network [J]. Systems Engineering and Electronics, 2022, 44(6): 2051-2059. |
[2] | Lei XIE, Dali DING, Zhenglei WEI, Andi TANG, Peng ZHANG. Real time prediction of maneuver trajectory for AdaBoost-PSO-LSTM network [J]. Systems Engineering and Electronics, 2021, 43(6): 1651-1658. |
[3] | Yifan ZHANG, Shuanghui ZHANG, Yongxiang LIU, Feng JING. Radar HRRP sequence target recognition method of attention mechanism based stacked LSTM network [J]. Systems Engineering and Electronics, 2021, 43(10): 2775-2781. |
[4] | Xiaoyue HU, Kai KANG, Hua QIAN, Shunqing ZHANG. Link adaptation algorithm based on LSTM network for LEO satellite [J]. Systems Engineering and Electronics, 2021, 43(1): 237-243. |
[5] | Jingfeng LI, Yunxiang CHEN, Huachun XIANG, Zhongyi CAI. Remaining useful life prediction for aircraft engine based on LSTM-DBN [J]. Systems Engineering and Electronics, 2020, 42(7): 1637-1644. |
[6] | Yuke HU, Wei XIA, Xiaoxuan HU, Haiquan SUN, Yunhui WANG. Vessel trajectory prediction based on recurrent neural network [J]. Systems Engineering and Electronics, 2020, 42(4): 871-877. |
[7] | Qian XIANG, Xiaodan WANG, Rui LI, Jie LAI, Guoling ZHANG. HRRP image recognition of midcourse ballistic targets based on DCNN [J]. Systems Engineering and Electronics, 2020, 42(11): 2426-2433. |
[8] | Hongpeng ZHANG, Changqiang HUANG, Yongbo XUAN, Shangqin TANG. Real-time prediction of air combat flight trajectory using GRU [J]. Systems Engineering and Electronics, 2020, 42(11): 2546-2552. |
[9] | Guanglei MENG, Mingzhe ZHOU, Haiyin PIAO, Huimin ZHANG. Threat assessment method of dual-aircraft formation based on cooperative tactical recognition [J]. Systems Engineering and Electronics, 2020, 42(10): 2285-2293. |
[10] | Shijie LI, Humin LEI, Chijun ZHOU, Tao ZHANG. Trajectory prediction algorithm for hypersonic reentry gliding target based on control variables estimation [J]. Systems Engineering and Electronics, 2020, 42(10): 2320-2327. |
[11] | ZHANG Bolun, ZHOU Di, WU Shikai. Maneuver model and trajectory prediction of near space hypersonic aircraft [J]. Systems Engineering and Electronics, 2019, 41(9): 2072-2079. |
[12] | NIU Liqiang, XIE Yongjun, ZHANG Chungang, WU Dongwei. Detection simulation of AEGIS combat system for ballistic missile in electronic warfare environment [J]. Systems Engineering and Electronics, 2019, 41(6): 1195-1201. |
[13] | HU Zhiheng, ZHOU Di, ZOU Xinguang. Guidance law estimation and trajectory prediction of interceptor missile [J]. Systems Engineering and Electronics, 2018, 40(3): 609-614. |
[14] | DU Guangyang, ZHENG Xuehe. Trajectory prediction method under the condition of radar cluster targets tracking [J]. Systems Engineering and Electronics, 2018, 40(12): 2683-2688. |
[15] | HAN Chunyao, XIONG Jiajun, ZHANG Kai, LAN Xuhui. Decomposition ensemble trajectory prediction algorithm for hypersonic vehicle [J]. Systems Engineering and Electronics, 2018, 40(1): 151-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||