Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (5): 1224-1231.doi: 10.12305/j.issn.1001-506X.2021.05.09
• Sensors and Signal Processing • Previous Articles Next Articles
Bangyan CUI1(), Runlan TIAN1,*(
), Dongfeng WANG2(
), Gang CUI1(
), Jingyuan SHI3(
)
Received:
2020-09-07
Online:
2021-05-01
Published:
2021-04-27
Contact:
Runlan TIAN
E-mail:cby0124@126.com;tianrunlan@126.com;dongfeng_wang@sina.com;cghomer@sina.com;495017115@qq.com
CLC Number:
Bangyan CUI, Runlan TIAN, Dongfeng WANG, Gang CUI, Jingyuan SHI. Radar emitter identification based on attention mechanism and improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43(5): 1224-1231.
Table 4
Experimental results of various model structures"
序号 | 网络 | 训练时间 | 训练轮数 | 损失 | 准确率/% |
1 | AF1CLDNN | 0:03:46 | 10 | 0.118 2 | 96.47 |
2 | F1CLDNN | 0:16:27 | 15 | 0.130 1 | 96.02 |
3 | A1CLDNN | 0:55:12 | 10 | 0.291 1 | 90.99 |
4 | 1CLDNN | 5:30:36 | 62 | 0.366 5 | 86.47 |
5 | DNN | 0:05:08 | 50 | 0.119 4 | 96.00 |
6 | Resnet34 | 0:07:08 | 7 | 0.193 3 | 94.80 |
7 | GoogleNet | 0:14:44 | 13 | 0.343 7 | 88.02 |
8 | AlexNet | 0:05:55 | 5 | 0.261 1 | 93.39 |
1 |
WANG Q S , BAI J , HUANG X Y , et al. Analysis of radar emitter signal sorting and recognition model structure[J]. Procedia Computer Science, 2019, 154, 500- 503.
doi: 10.1016/j.procs.2019.06.076 |
2 | 孙艺聪, 田润澜, 王晓峰, 等. 基于改进CLDNN的辐射源信号识别[J]. 系统工程与电子技术, 2021, 43 (1): 42- 47. |
SUN Y C , TIAN R L , WANG X F , et al. Radiation source signal recognition based on improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43 (1): 42- 47. | |
3 |
朱志宇, 张冰, 王建华. 灰关联分析和证据理论在雷达辐射源识别中的应用及改进[J]. 电光与控制, 2007, 14 (1): 34- 37.
doi: 10.3969/j.issn.1671-637X.2007.01.010 |
ZHU Z Y , ZHANG B , WANG J H . Application and improvement of Grey correlation analysis and evidence theory in radar source identification[J]. Electronics Optics and Control, 2007, 14 (1): 34- 37.
doi: 10.3969/j.issn.1671-637X.2007.01.010 |
|
4 |
朱志宇. 基于模糊推理的雷达辐射源识别方法[J]. 火力与指挥控制, 2009, 34 (4): 95- 99.
doi: 10.3969/j.issn.1002-0640.2009.04.027 |
ZHU Z Y . A method of radar source identification based on fuzzy inference[J]. Fire Control and Command Control, 2009, 34 (4): 95- 99.
doi: 10.3969/j.issn.1002-0640.2009.04.027 |
|
5 | WANG Y H , ZHANG S C , ZHANG Y W , et al. A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment[J]. Complexity, 2019, 2019, 5470974. |
6 | 杜盈, 何瑞珠. 基于深度学习的电磁辐射源识别技术[J]. 通讯世界, 2020, 27 (7): 75- 76. |
DU Y , HE R Z . Electromagnetic radiation source identification technology based on deep learning[J]. Telecom World, 2020, 27 (7): 75- 76. | |
7 | 李昆, 朱卫纲. 一种深度学习的雷达辐射源识别方法[J]. 电子设计工程, 2020, 28 (12): 99- 104. |
LI K , ZHU W G . A deep learning radar radiation source identification method[J]. Electronic Design Engineering, 2020, 28 (12): 99- 104. | |
8 |
BUKHARI D , WANG Y T , WANG H . Multilingual convolutional, long short-term memory, deep neural networks for low resource speech recognition[J]. Procedia Computer Science, 2017, 107, 842- 847.
doi: 10.1016/j.procs.2017.03.179 |
9 | MIAO Y L, JI Y C, PENG E L. Application of CNN-BiGRU model in chinese short text sentiment analysis[C]//Proc. of the International Association of Applied Science and Engineering, 2019: 510-514. |
10 | LIU Z D , ZHOU W G , LI H Q . AB-LSTM: attention-based bidrectional LSTM model for scene text detection[J]. ACM Trans.on Multimedia Computing Communications, and Applications, 2019, 15 (4): 107. |
11 | SAINATH T N, WEISS R, WILSON K W. Learning the speech front end with raw waveform CLDNNs[C]//Proc. of the Conference of the International Speech Communication Association, 2015. |
12 | DINKEL H, CHEN N, QIAN Y, et al. End-to-end spoofing detection with raw waveform CLDNNS[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2017: 4860-4864. |
13 |
VISHAL P , RAJESH K A . Convolutional support vector machines for speech recogniton[J]. International Journal of Speech Technology, 2019, 22 (3): 601- 609.
doi: 10.1007/s10772-018-09584-4 |
14 |
VIMINA E R , JACOB K P . Feature fusion method using BoVW framework for enhancing image retrieval[J]. IET Image Processing, 2019, 13 (11): 1979- 1985.
doi: 10.1049/iet-ipr.2018.5381 |
15 |
HOU S D , SUN Q S . An orthogonal regularized CCA learning algorithm for feature fusion[J]. Journal of Visual Communication and Image Representation, 2014, 25 (5): 785- 792.
doi: 10.1016/j.jvcir.2014.01.009 |
16 |
LI J , JIN K , ZHOU D L , et al. Attention mechanism-based CNN for facial expression recognition[J]. Neurocomputing, 2020, 411, 340- 350.
doi: 10.1016/j.neucom.2020.06.014 |
17 |
XU H F , CHAI L , LUO Z M , et al. Stock movement predictive network via incorporative attention mechanisms based on tweet and historical prices[J]. Neurocomputing, 2020, 418, 326- 339.
doi: 10.1016/j.neucom.2020.07.108 |
18 |
LEI Y T , DU W W , HU Q H . Face sketch-to-photo transformation with multi-scale self-attention GAN[J]. Neurocomputing, 2020, 396, 13- 23.
doi: 10.1016/j.neucom.2020.02.024 |
19 |
GAO L L , WANG X H , SONG J K , et al. Fused GRU with semantic-temporal attention for video captioning[J]. Neurocomputing, 2020, 395, 222- 228.
doi: 10.1016/j.neucom.2018.06.096 |
20 |
XU X , WANG W , WANG J H . A three-way incremental-learning algorithm for radar emitter identification[J]. Frontiers of Computer Science, 2016, 10 (4): 673- 688.
doi: 10.1007/s11704-015-4457-7 |
21 |
CHEN C X , HE M H , LI H F . An improved radar emitter recognition method based on dezert-smarandache theory[J]. Chinese Journal of Electronics, 2015, 24 (3): 611- 615.
doi: 10.1049/cje.2015.07.029 |
22 |
ZHANG W B , JI H B , LIAO G S , et al. A novel extreme learning machine using privileged information[J]. Neurocomputing, 2015, 168, 823- 828.
doi: 10.1016/j.neucom.2015.05.042 |
23 |
LI Y B , GE J , LIN Y , et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21 (11): 4254- 4260.
doi: 10.1007/s11771-014-2422-5 |
24 |
CONG C , ZHANG H M . Invert-U-Net DNN segmentation model for MRI cardiac left ventricle segmentation[J]. The Journal of Engineering, 2018, 2018 (16): 1463- 1467.
doi: 10.1049/joe.2018.8302 |
25 |
LIU M , JIANG H J , HU C . Aperiodically intermittent strategy for finite-time synchronization of delayed neural networks[J]. Neurocomputing, 2018, 310, 1- 9.
doi: 10.1016/j.neucom.2018.04.009 |
26 | WEI R , ZHANG X H , WANG J H , et al. The research of sleep staging based on single-lead electrocardiogram and deep neural network[J]. Biomedical Engineering Letters, 2018, 8, 87- 93. |
27 | ZHANG Y J , QIN N , HUANG D Q , et al. Fault diagnosis of high-speed train bogie based on deep neural network[J]. IFAC PapersOnLine, 2019, 52 (24): 135- 139. |
28 | GAO Z W , WANG J , WANG J Y , et al. Time-frequency analysis of the vortex motion in a cylindrical cyclone separator[J]. Chemical Engineering Journal, 2019, 373, 1120- 1131. |
29 |
YAO F , CHEN G Y . Time-frequency analysis of impact echo signals of grouting defects in tunnels[J]. Russian Journal of Nondestructive Testing, 2019, 55 (8): 581- 595.
doi: 10.1134/S1061830919080102 |
30 | YU G , WANG Z H , ZHAO P , et al. Local maximum synchrosqueezing transform: an energy-concentrated time-frequency analysis tool[J]. Mechanical Systems and Signal Processing, 2019, 117, 537- 552. |
31 | FU W H , HU Z , LI D . A sorting algorithm for multiple frequency hopping signals in complex electromagnetic environments[J]. Circuits, Systems, and Signal Processing, 2020, 39 (1): 245- 267. |
32 | ZHANG C H , HAN Y T , ZHANG P , et al. Research on modern radar emitter modelling technique under complex electromagnetic environment[J]. The Journal of Engineering, 2019, 2019 (20): 7134- 7138. |
33 |
LIU C T , WU R J , HE Z X , et al. Modeling and analyzing interference signal in a complex electromagnetic environment[J]. EURASIP Journal on Wireless Communications and Networking, 2016, 2016 (1): 1- 9.
doi: 10.1186/s13638-015-0498-8 |
34 | GUAN L , LI Z , HAO B J , et al. Cognitive frequency hopping sequences[J]. Chinese Journal of Electronics, 2016, 25 (1): 185- 191. |
[1] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[2] | Xiaofeng ZHAO, Fei WU, Yebin XU, Jiahui NIU, Wei CAI, Zhili ZHANG. Evaluation method of infrared camouflage effect based on background restoration [J]. Systems Engineering and Electronics, 2022, 44(8): 2554-2561. |
[3] | Limin ZHANG, Kaiwen TAN, Wenjun YAN, Yuyuan ZHANG. Radar emitter recognition based on multi-level jumper residual network [J]. Systems Engineering and Electronics, 2022, 44(7): 2148-2156. |
[4] | Guodong JIN, Yuanliang XUE, Lining TAN, Jiankun XU. Advances in object tracking algorithm based on siamese network [J]. Systems Engineering and Electronics, 2022, 44(6): 1805-1822. |
[5] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[6] | Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method [J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552. |
[7] | Hong ZOU, Chenyang BAI, Peng HE, Yaping CUI, Ruyan WANG, Dapeng WU. Edge service placement strategy based on distributed deep learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1728-1737. |
[8] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[9] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[10] | Xinyu ZHANG, Yuan LIU, Jianing SONG. Short-term orbit prediction based on LSTM neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 939-947. |
[11] | Shiyan SUN, Gang ZHANG, Weige LIANG, Bo SHE, Fuqing TIAN. Remaining useful life prediction method of rolling bearing based on time series data augmentation and BLSTM [J]. Systems Engineering and Electronics, 2022, 44(3): 1060-1068. |
[12] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[13] | Yunxiang YAO, Ying CHEN. Target tracking network based on dual-modal interactive fusion under attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 410-419. |
[14] | Tao JIN, Xiaofeng WANG, Runlan TIAN, Xindong ZHANG. Rapid recognition method of radar emitter based on improved 1DCNN+TCN [J]. Systems Engineering and Electronics, 2022, 44(2): 463-469. |
[15] | Yutang MA, Peng SUN, Jieyong ZHANG, Peng WANG, Yunfei YAN, Liang ZHAO. Air group intention recognition method under imbalance samples [J]. Systems Engineering and Electronics, 2022, 44(12): 3747-3755. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||