Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (9): 2033-2040.doi: 10.3969/j.issn.1001-506X.2020.09.19
Previous Articles Next Articles
Minglan XIONG(), Huawei WANG(
), Yi XU(
), Qiang FU(
)
Received:
2019-09-16
Online:
2020-08-26
Published:
2020-08-26
CLC Number:
Minglan XIONG, Huawei WANG, Yi XU, Qiang FU. General aviation safety research based on prediction of bird strike symptom[J]. Systems Engineering and Electronics, 2020, 42(9): 2033-2040.
Table 1
Relationship between the number of hidden layer units and the standard deviation and RMSE of bird strike symptom prediction"
隐藏单元 | 预测值标准方差 | RMSE |
18 | 6.097 | 4.665 7 |
19 | 7.035 | 5.910 4 |
20 | 5.672 | 4.777 8 |
21 | 7.390 | 6.590 2 |
22 | 5.312 | 5.447 8 |
$\underline{{\rm{23}}}$ | 4.652 | 4.355 6 |
24 | 6.008 | 4.725 7 |
25 | 4.731 | 4.537 4 |
26 | 6.792 | 4.976 6 |
27 | 4.978 | 4.754 4 |
28 | 6.770 | 4.903 8 |
1 |
ANDERSONA A , CARPENTER D S , BEGIER M J , et al. Modeling the cost of bird strikes to US civil aircraft[J]. Transportation Research Part D, 2015, 38, 49- 58.
doi: 10.1016/j.trd.2015.04.027 |
2 | ROCAGONZALEZ J L, VERLOPEZ J A, BERMUDEZA G R. Organisational and costing aspects to prevent wildlife strikes on airports: a case study of Spanish airport security managers[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0925753518314012. |
3 |
WASHBURN B E , CISAR P J , DEVAULTA T L . Wildlife strikes to civil helicopters in the US, 1990-2011[J]. Transportation Research Part D, 2013, 24, 83- 88.
doi: 10.1016/j.trd.2013.06.004 |
4 | Federal Aviation Administration. Wildlife strikes to civil aircraft in the United States 1990-2017 [R]. Washington D.C. Federal Aviation Administration, 2019. |
5 | 李卫东.中国民航飞机鸟击事件统计分析与研究[D].西安:西北工业大学, 2005. |
LI W D. Statistical analysis and research on bird attack events of Chinese civil aviation aircraft[D]. Xi'an: Northwestern Polytechnical University, 2005. | |
6 |
SIEMANN M H , RITT S A . Novel particle distributions for SPH bird-strike simulations[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 343, 746- 766.
doi: 10.1016/j.cma.2018.08.044 |
7 |
CAI J , BAO H , ZUO H F , et al. Safety evaluation of airworthiness requirement of bird-strike on aeroplane[J]. Engineering Failure Analysis, 2019, 102, 407- 416.
doi: 10.1016/j.engfailanal.2019.04.042 |
8 | KIM D H , KIM S W . Evaluation of bird strike-induced damages of helicopter composite fuel tank assembly based on fluid-structure interaction analysis[J]. Composite Structures, 2019, 201 (15): 676- 686. |
9 | LOPEALAGO M , CASADO R , BERMUDEZ A , et al. A predictive model for risk assessment on imminent bird strikes on airport areas[J]. Aerospace Science and Technology, 2017, 62 (62): 19- 30. |
10 |
LIU J , LI Y , YU X C , et al. Design of aircraft structures against threat of bird strikes[J]. Chinese Journal of Aeronautics, 2018, 31 (7): 1535- 1558.
doi: 10.1016/j.cja.2018.05.004 |
11 | 于思璇, 王华伟. 基于稀疏降噪自编码神经网络的通用航空风险预测[J]. 系统工程与电子技术, 2019, 41 (1): 112- 117. |
YU S X , WANG H W . Risk forecasting in general aviation based on sparse de-noising auto-encoder neural network[J]. Systems Engineering and Electronics, 2019, 41 (1): 112- 117. | |
12 | RAO A H, MARAIS K. A state-based approach to modeling general aviation accidents[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0951832019303424. |
13 | BURNS K, BONACETO C. An empirically benchmarked human reliability analysis of general aviation[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0951832017310219. |
14 | 刁斌.飞机风挡鸟撞有限元模拟及撞击影响分析[D].南京:南京航空航天大学, 2017. |
DIAO B. Finite element simulation and impact analysis of aircraft windshield bird collision[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. | |
15 | 杨盛华, 尹洋, 郭欣萌, 等. 基于多源遥感数据的净空区建筑物三维动态监测[J]. 测绘通报, 2019, (S1): 105- 109. |
YANG S H , YIN Y , GUO X M , et al. Three-dimensional dyna-mic monitoring method of clearance area buildings based on multi-source remote sensing data[J]. Bulletin of Surveying and Mapping, 2019, (S1): 105- 109. | |
16 | OKTAY A B, KOCER A. Differential diagnosis of Parkinson and essential tremor with convolutional LSTM networks[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S1746809419302642. |
17 |
WANG J W , CHEN R X , HE Z C . Traffic speed prediction for urban transportation network: a path based deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2019, 100, 372- 385.
doi: 10.1016/j.trc.2019.02.002 |
18 | LI P, MOHAMED A, YUAN J H. Real-time crash risk prediction on arterials based on LSTM-CNN[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0001457519311108. |
19 |
ERTAM F . An effective gender recognition approach using voice data via deeper LSTM networks[J]. Applied Acoustics, 2019, 156, 351- 358.
doi: 10.1016/j.apacoust.2019.07.033 |
20 | CAO J , LI Z , LI J . Financial time series forecasting model based on CEEMDAN and LSTM[J]. Physica A: Statistical Mechanics and its Applications, 2018, 519, 127- 139. |
21 | MAJID M, SAFABAKHSH R. Correlational convolutional LSTM for human action recognition[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0925231219304436. |
22 |
MUZAFFAR S , AFSHARI A . Short-term load forecasts using LSTM networks[J]. Energy Procedia, 2019, 158, 2922- 2927.
doi: 10.1016/j.egypro.2019.01.952 |
23 | XIAO C J, CHEN N C, HU C L. Short-and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0034425719303773. |
24 |
ZHANG Q , WANG H , DONG J Y , et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (10): 1745- 1749.
doi: 10.1109/LGRS.2017.2733548 |
25 | ZHANG B, ZHANG H W, ZHAO G M, et al. Constructing a PM 2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S1364815219300192. |
26 |
ELSHEIKH A , YACOUT S , OUALI M S . Bidirectional handshaking LSTM for remaining useful life prediction[J]. Neurocomputing, 2019, 323, 148- 156.
doi: 10.1016/j.neucom.2018.09.076 |
27 | CABRERA D , GUAMAN A , ZHANG S H , et al. Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor[J]. Neurocomputing, 2020, 380 (C): 51- 66. |
28 | GIANCARLO Z , KARIM R . Deep learning with TensorFlow[M]. 2nd ed (photocopy edition) Nanjing: Southeast University press, 2019: 260- 297. |
29 | 陈强. 高级计量经济学及Stata应用[M]. 2版 北京: 高等教育出版社, 2018: 246- 247. |
CHEN Q . Advanced econometrics and stata applications[M]. 2nd ed Beijing: Higher Education Press, 2018: 246- 247. | |
30 | DAGUM E B . International encyclopedia of the social & behavioral sciences[M]. 2nd ed America: Pergamon, 2015: 347- 353. |
[1] | Qian NIE, Lihua YANG, Bo HU, Lulu REN. Time-varying channel prediction method based on LSTM neural networks under basis expansion model [J]. Systems Engineering and Electronics, 2022, 44(9): 2971-2977. |
[2] | Ruiping JI, Chengyi ZHANG, Yan LIANG, Yuedong WANG. Trajectory prediction of boost-phase ballistic missile based on LSTM [J]. Systems Engineering and Electronics, 2022, 44(6): 1968-1976. |
[3] | Zhaoguo HOU, Huawei WANG, Liang ZHOU, Qiang FU. Fault diagnosis of rotating machinery based on improved deep residual network [J]. Systems Engineering and Electronics, 2022, 44(6): 2051-2059. |
[4] | Xinyu ZHANG, Yuan LIU, Jianing SONG. Short-term orbit prediction based on LSTM neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 939-947. |
[5] | Hang ZENG, Hongmei ZHANG, Bo REN, Lijie CUI, Jiangnan WU. Aviation safety prediction method research based on improved LSTM model [J]. Systems Engineering and Electronics, 2022, 44(2): 569-576. |
[6] | Yifan ZHANG, Shuanghui ZHANG, Yongxiang LIU, Feng JING. Radar HRRP sequence target recognition method of attention mechanism based stacked LSTM network [J]. Systems Engineering and Electronics, 2021, 43(10): 2775-2781. |
[7] | Xiaoyue HU, Kai KANG, Hua QIAN, Shunqing ZHANG. Link adaptation algorithm based on LSTM network for LEO satellite [J]. Systems Engineering and Electronics, 2021, 43(1): 237-243. |
[8] | Jingfeng LI, Yunxiang CHEN, Huachun XIANG, Zhongyi CAI. Remaining useful life prediction for aircraft engine based on LSTM-DBN [J]. Systems Engineering and Electronics, 2020, 42(7): 1637-1644. |
[9] | Zilong WU, Hong CHEN, Yingke LEI, Xin LI, Hao XIONG. Communication emitter individual identification based on stacked LSTM network [J]. Systems Engineering and Electronics, 2020, 42(12): 2915-2923. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||