Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (6): 1332-1337.doi: 10.3969/j.issn.1001-506X.2020.06.17
Previous Articles Next Articles
Kuizhi YUE1(), Jianzhong ZHAO2(
), Liangliang CHENG3(
), Dazhao YU1(
)
Received:
2019-07-03
Online:
2020-06-01
Published:
2020-06-01
Supported by:
CLC Number:
Kuizhi YUE, Jianzhong ZHAO, Liangliang CHENG, Dazhao YU. Analysis and modeling of timing abeam on landing pattern for embarked aircraft[J]. Systems Engineering and Electronics, 2020, 42(6): 1332-1337.
1 | 王鹏, 焦晓辉. 舰载机着舰指挥引导技术[J]. 中国科技信息, 2019, (Z1): 35- 36. |
WANG P , JIAO X H . Ship borne aircraft landing command and guidance technology[J]. China Science and Technology information, 2019, (Z1): 35- 36. | |
2 | 张雯, 张强. 基于航迹预测的着舰指挥决策算法[J]. 哈尔滨工程大学学报, 2019, 40 (1): 181- 188. |
ZHANG W , ZHANG Q . Carrier landing command decision making algorithm based on trajectory prediction[J]. Journal of Harbin Engineering University, 2019, 40 (1): 181- 188. | |
3 | 陈胜杰, 焦晓辉, 王鹏. 舰载机着舰中侧风和常值甲板风的影响研究[J]. 航空科学技术, 2016, 27 (4): 41- 45. |
CHENG S J , JIAO X H , WANG P . Research on effect of crosswind and cons deck wind in carrier aircraft landing[J]. Aeronautical Science & Technology, 2016, 27 (4): 41- 45. | |
4 |
叶兵, 孙洪波, 张力, 等. 眼位影响下着舰信号官指挥战位位置[J]. 指挥控制与仿真, 2014, 36 (6): 82- 84, 87.
doi: 10.3969/j.issn.1673-3819.2014.06.017 |
YE B , SUN H B , ZHANG L , et al. Design of landing signal officer station based on eye-position[J]. Command Control & Simulation, 2014, 36 (6): 82- 84, 87.
doi: 10.3969/j.issn.1673-3819.2014.06.017 |
|
5 | CHENG L L , YUE K Z , HUANG Z H . A prediction model for night recovery of embarked aircrafts based on system dynamics[J]. Journal of Aerospace Technology and Management, 2017, 9 (4): 1- 8. |
6 | 吴文海, 张杨, 胡云安, 等. 舰载机着舰非线性反演控制方法研究进展[J]. 系统工程与电子技术, 2018, 40 (7): 1578- 1587. |
WU W H , ZHANG Y , HU Y A , et al. Research development in nonlinear backstepping control method method of carrier-based aircraft landing[J]. Systems Engineering and Electronics, 2018, 40 (7): 1578- 1587. | |
7 | CHEN C , TAN W Q , LI H X , et al. A fuzzy human pilot model of longitudinal control for a carrier landing task[J]. IEEE Trans.on Aerospace and Electronic Systems, 2008, 54 (1): 453- 466. |
8 | 钟涛. 舰载机进场动力补偿系统设计[J]. 应用科技, 2013, 40 (2): 40- 43. |
ZHONG T . The design of the approach power compensator system of a carrier-based aircraft[J]. Application Science Technology, 2013, 40 (2): 40- 43. | |
9 |
FORREST J S , KAARIA C H , OWEN I . Evaluating ship superstructure aerodynamics for maritime helicopter operations through CFD and flight simulation[J]. Aeronautical Journal, 2016, 120 (1232): 1578- 1603.
doi: 10.1017/aer.2016.76 |
10 | LASALLE N R , SNYDER M R , KANG H S , et al. Modification of ship air wakes with passive flow control[J]. Naval Engineers Journal, 2016, 128 (14): 69- 81. |
11 | YUAN W X , WALL A , LEE R . Combined numerical and experimental simulations of unsteady ship airwakes[J]. Computers & Fluids, 2018, 172, 29- 53. |
12 |
LI J N , DUAN H B . Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system[J]. Aerospace Science and Technology, 2015, 42, 187- 195.
doi: 10.1016/j.ast.2015.01.017 |
13 | LI C X, GANG L, HONG G X. A method of F/A-18 carrier landing position prediction based on back propagation neural network[C]// Proc.of the International Conference on Mechanical & Aerospace Engineering, 2016: 507-511. |
14 |
WU Y , SUN L G , QU X J . A sequencing model for a team of aircraft landing on the carrier[J]. Aerospace Science and Technology, 2016, 54, 72- 87.
doi: 10.1016/j.ast.2016.04.007 |
15 | CHEN C , TAN W Q , LI H X , et al. A fuzzy human pilot model of longitudinal control for carrier landing task[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 54 (1): 453- 466. |
16 |
SU X C , WU Y , SONG J Y , et al. A fuzzy path selection strategy for aircraft landing on the carrier[J]. Applied Sciences, 2018, 8 (5): 779- 800.
doi: 10.3390/app8050779 |
17 | WU W H , JIE W , LIU J T , et al. Carrier landing robust control based on longitudinal decoupling[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34 (6): 609- 616. |
18 | ZHEN Z Y , JIANG S Y , JU J . Preview control and particle filtering for automatic carrier landing[J]. IEEE Trans.on Aerospace & Electronic Systems, 2018, 54 (6): 2662- 2674. |
19 |
GUAN Z Y , MA Y P , ZHENG Z W , et al. Prescribed performance control for automatic carrier landing with disturbance[J]. Nonlinear Dynamics, 2018, 94 (2): 1335- 1349.
doi: 10.1007/s11071-018-4427-3 |
20 | CHEN Z G, WEI H, CHEN J F, et al. Simulation of the longitudinal carrier landing in different sea-states for carrier-based aircraft[C]//Proc.of the International Symposium on Computational Intelligence & Design, 2016: 474-477. |
21 | JIANG L J, YAO Y J, LI Z L, et al. User-experience-based visual design study for carrier optical landing-aid system[C]//Proc.of the International Conference of Design, User Experience and Usability, 2018: 200-217. |
22 | LU K K, YU J Y, KOU K H. The top-level design study for the automatic carrier landing system[C]//Proc.of the Guidance, Navigation & Control Conference, 2017: 1704-1707. |
23 | YANG Z Y , DUAN H B , FAN Y M , et al. Automatic carrier landing system multilayer parameter design based on cauchy mutation pigeon-inspired optimization[J]. Aerospace Science & Technology, 2018, 79, 518- 530. |
24 | SUN G Q, ZENG S K, GUO J B, et al. A quantitative evaluation method of pilot errors during landing process of carrier-based aircraft[C]//Proc.of the 1st International Conference on Reliability Systems Engineering, 2016. |
25 | ZHAO J Y , SUN G Q , ZENG S K , et al. The reliability assessment of human systems interaction for aircraft carrier landing[J]. Journal of Mechanical Science & Technology, 2016, 30 (10): 4465- 4469. |
26 |
ZHENG Z W , JIN Z H , LIANG S , et al. Adaptive sliding mode relative motion control for autonomous carrier landing of fixed-wing unmanned aerial vehicles[J]. IEEE Access, 2017, 5, 5556- 5565.
doi: 10.1109/ACCESS.2017.2671440 |
27 |
LEE S K , LEE J H , LEE S M , et al. Sliding mode guidance and control for UAV carrier landing[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (2): 951- 966.
doi: 10.1109/TAES.2018.2867259 |
28 | ZHEN Z Y , MA K , KUMAR B A . Automatic carrier landing control for unmanned aerial vehicles based on preview control[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34 (4): 413- 419. |
29 | NING J, LEI Z H, YAN S D. An Independently carrier landing method using point and line features for fixed-wing UAVs[C]// Proc.of the Chinese Conference on Image and Graphics Technologies, 2016: 176-183. |
30 | ZHOU D, ZHOU J L, ZHANG M J, et al. Deep learning for unmanned aerial vehicles landing carrier in different conditions[C]// Proc.of the International Conference on Advanced Robotics, 2017: 469-475. |
[1] | Lei WANG, Zhiyong ZHANG, Weigui ZENG, Silei CAO, Tianhe ZHANG. An improved GMM clustering based on data field and decision graph [J]. Systems Engineering and Electronics, 2022, 44(9): 2743-2751. |
[2] | Tianye SUN, Wei SUN, Jianjun WU. UAV formation rapid assembly method based on improved Quatre algorithm [J]. Systems Engineering and Electronics, 2022, 44(9): 2840-2848. |
[3] | Wantong CHEN, Shuyu TIAN, Julian ZHANG, Qing LIU, Shiyu REN. Research on modeling of debris diffusion distribution for suborbital disintegration accident [J]. Systems Engineering and Electronics, 2022, 44(9): 2922-2928. |
[4] | Qian NIE, Lihua YANG, Bo HU, Lulu REN. Time-varying channel prediction method based on LSTM neural networks under basis expansion model [J]. Systems Engineering and Electronics, 2022, 44(9): 2971-2977. |
[5] | Yulin TANG, Houpu LI, Weidong ZHANG, Shaofeng BIAN, Guojun ZHAI, Min LIU, Xiaoping ZHANG. Lightweight DETR-YOLO method for detecting shipwreck target in side-scan sonar [J]. Systems Engineering and Electronics, 2022, 44(8): 2427-2436. |
[6] | Tao ZHANG, Xiaogang YANG, Ruitao LU, Xueli XIE, Chuang LIU. Key-point based method for ship detection in remote sensing images [J]. Systems Engineering and Electronics, 2022, 44(8): 2437-2447. |
[7] | Zilin HOU, Ting CHENG, Han PENG. GMPHD based on measurement conversion sequential filtering for maneuvering target tracking [J]. Systems Engineering and Electronics, 2022, 44(8): 2474-2482. |
[8] | Zhigeng FANG, Yuexin XIA, Jingru ZHANG, Yi XIONG, Jingyi CHEN. A stimulus-response learning model for Agent-based system process A-GERT network [J]. Systems Engineering and Electronics, 2022, 44(8): 2540-2553. |
[9] | Hongwei BIAN, Zhonglei ZHU, Rongying WANG, Heng MA, Zhe WEN. Ship motion parameter generator based on linear acceleration and angular velocity six degree of freedom motion model [J]. Systems Engineering and Electronics, 2022, 44(8): 2628-2634. |
[10] | Lu ZHUANG, Zhong LU, Haijing SONG, Jia ZHOU. An optimization method for development assurance level assignment of airborne system [J]. Systems Engineering and Electronics, 2022, 44(8): 2688-2698. |
[11] | Xinmin TANG, Pengcheng ZHENG. IMM aircraft short-term track extrapolation based on geodetic coordinate system [J]. Systems Engineering and Electronics, 2022, 44(7): 2293-2301. |
[12] | Dongdong ZHANG, Xiaochuan AI, Chang LIU. Research on equipment performance degradation based on feature extraction of similar samples [J]. Systems Engineering and Electronics, 2022, 44(7): 2374-2380. |
[13] | Shouzhen ZENG, Yingjie HU. Group decision making method for distributed linguistic trust network based on highly incomplete information [J]. Systems Engineering and Electronics, 2022, 44(6): 1907-1919. |
[14] | Shuai WANG, Jianjun XIANG, Fang PENG, Shujuan TANG. Target tracking algorithm based on a new steepest descent method [J]. Systems Engineering and Electronics, 2022, 44(5): 1512-1519. |
[15] | Luying REN, Qingguo WANG, Qian MA, Haifeng ZHANG, Weiwei XU. Modeling method study for virtual prototyping of complex products based on meta model [J]. Systems Engineering and Electronics, 2022, 44(5): 1609-1614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||