Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (12): 3890-3900.doi: 10.12305/j.issn.1001-506X.2025.12.15
• Model-Based System Architecture Design and Verification • Previous Articles
Yihui GONG1(
), Guoxin WANG1,*(
), Yan YAN1, Shouxuan WU1,2, Mengru DONG1, Yongji YUAN1
Received:2025-03-03
Revised:2025-06-17
Online:2025-11-28
Published:2025-11-28
Contact:
Guoxin WANG
E-mail:3120235543@bit.edu.cn;wangguoxin@bit.edu.cn
CLC Number:
Yihui GONG, Guoxin WANG, Yan YAN, Shouxuan WU, Mengru DONG, Yongji YUAN. Review on architecture model quality in model-based systems engineering: concept, framework, technology[J]. Systems Engineering and Electronics, 2025, 47(12): 3890-3900.
Table 1
Definition of model quality in literature"
| 定义方式 | 模型类型 | 作者 | 年份 | 详细描述 |
| 质量框架 | 概念建模 | Lindland等[ | 1994 | 语法质量、语义质量、实用质量 |
| Krogstie[ | 2012 | SEQUAL | ||
| Espinilla 等[ | 2011 | QuEF | ||
| 概念建模/UML | Mohagheghi等[ | 2009 | 6C框架 | |
| 视觉建模语言 | Moody[ | 2009 | 符号物理学 | |
| DSML | Challenger等[ | 2015 | DSML质量框架 | |
| 模型规范 | UML | Sayeb等[ | 2012 | 建模语言和模型的质量模式 |
| Ambler[ | 2005 | UML元素和图表使用规范 | ||
| Balaban等[ | 2018 | 设定不符合建模规范的反模式 | ||
| SysML | Jansen等[ | 2015 | SysML建模规范 |
| 1 | 王林尧, 赵滟, 张仁杰. 数字工程研究综述[J]. 系统工程学报, 2023, 38 (2): 265- 274. |
| WANG L Y, ZHAO Y, ZHANG R J. Review of digital engineering research[J]. Journal of Systems Engineering, 2023, 38 (2): 265- 274. | |
| 2 | BJORKMANE A, SARKANIS S, MAZZUCHI T A. Using model-based systems engineering as a framework for improving test and evaluation activities[J]. Systems Engineering, 2013, 16(3): 346 –362. |
| 3 | 鲁金直, 王国新, 阎艳, 等. 基于多架构建模语言的系统工程建模方法[J]. 系统工程学报, 2023, 38 (2): 146- 160. |
| LU J Z, WANG G X, YAN Y, et al. System engineering modeling methodology based on mutil-architectural modeling language[J]. Journal of Systems Engineering, 2023, 38 (2): 146- 160. | |
| 4 | J Z, et al. Bibliometric analysis of model-based systems engineering: past, current, and future[J]. IEEE Trans. on Engineering Management, 2022, 71, 2475- 2492. |
| 5 | 焦洪臣, 雷勇, 张宏宇, 等. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43 (9): 2516- 2525. |
| JIAO H C, LEI Y, ZHANG H Y, et al. Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43 (9): 2516- 2525. | |
| 6 |
王雨农, 毕文豪, 张安, 等. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43 (12): 3579- 3585.
doi: 10.12305/j.issn.1001-506X.2021.12.20 |
|
WANG Y N, BI W H, ZHANG A, et al. DoDAF-based civil aircraft MBSE development method[J]. Systems Engineering and Electronics, 2021, 43 (12): 3579- 3585.
doi: 10.12305/j.issn.1001-506X.2021.12.20 |
|
| 7 | 朱景璐, 朱野, 李立, 等. 基于MBSE的卫星能源系统设计与验证[J]. 系统工程与电子技术, 2024, 46 (11): 3807- 3819. |
| ZHU J L, ZHU Y, LI L, et al. Satellite power system design and validation based on MBSE[J]. Systems Engineering and Electronics, 2024, 46 (11): 3807- 3819. | |
| 8 | 李胜忠, 梁川, 赵锋. 基于MBSE的船型与水动力性能研究设计模式探讨[J]. 舰船科学技术, 2021, 43 (15): 1- 5. |
| LI S Z, LIANG C, ZHAO F. Discussion on the design pattern of hullform and hydrodynamic performance based on MBSE[J]. Ship Science and Technology, 2021, 43 (15): 1- 5. | |
| 9 | 鲁金直, 王国新, 郑新华, 等. 基于模型系统工程中国应用调查[J]. 科技导报, 2018, 36 (20): 57- 66. |
| LU J Z, WANG G X, ZHENG X H, et al. Model-based systems engineering application investigation in China[J]. Science & Technology Review, 2018, 36 (20): 57- 66. | |
| 10 | SHIMABUKURO J, MITALO E. Automating model validation for quantifying system maturity & quality assurance[C]//Proc. of the IEEE Aerospace Conference, 2024. |
| 11 | Department of Defense. Digital engineering strategy[R]. Washington D. C.: Department of Defense, 2018. |
| 12 | 刘婷, 张建超. 数字主线应用于航空发动机的初步探讨[J]. 航空动力, 2021 (2): 30- 34. |
| LIU T, ZHANG J C. Preliminary discussion on application of digital thread to aero engine[J]. Aerospace Power, 2021 (2): 30- 34. | |
| 13 |
宋羽, 邹汝平, 王军. 基于模型的系统工程在导弹系统研制中的实践[J]. 兵工学报, 2022, 43 (S1): 97- 106.
doi: 10.12382/bgxb.2022.A014 |
|
SONG Y, ZOU R P, WANG J. On the practice of model-based system engineering in missile development[J]. Acta Armamentarii, 2022, 43 (S1): 97- 106.
doi: 10.12382/bgxb.2022.A014 |
|
| 14 | 徐博, 任占勇, 司勇, 等. MBSE研制模式下的综合保障专业里程碑节点审查方法[J]. 航空标准化与质量, 2021 (2): 13- 18. |
| XU B, REN Z Y, SI Y, et al. Milestone review method of logistics support under MBSE development mode[J]. Aeronautic Standardization & Quality, 2021 (2): 13- 18. | |
| 15 |
GIRALDO F D. , ESPANA S, PASTOR O, et al. Considerations about quality in model-driven engineering: current state and challenges[J]. Software Quality Journal, 2018, 26, 685- 750.
doi: 10.1007/s11219-016-9350-6 |
| 16 | MACDONALD A, RUSSELL D, ATCHISON B. Model-driven development within a legacy system: an industry experience report[C]//Proc. of the Australian Software Engineering Conference, 2005: 14−22. |
| 17 | CDERMOTT T, DELAURENTIS D, BELING P, et al. MAI4SE and SE4AI: a research roadmap[J]. Insight, 2020, 23 (1): 814. |
| 18 | TIMPERLEY L R, BERTHOUD L, SNIDER C. Assessment of large language models for use in generative design of model based spacecraft system architectures[J]. Journal of Engineering Design, 2024, 36(4): 550−570. |
| 19 | FUCHS J, HELMERICH C, HOLLAND S. Transforming system modeling with declarative methods and generative AI[C]//Proc. of the AIAA Scitech Forum, 2024. |
| 20 | GILB T. A conceptual glossary for systems engineering[C]//Proc. of the INCOSE International Symposium, 2004. |
| 21 | WAYNE W A. Model-based systems engineering[M]. Boca Raton: CRC Press, 1993. |
| 22 | OLIVER D W. Descriptions of systems engineering methodologies and comparison of information representations[C]//Proc. of the INCOSE International Symposium, 1993. |
| 23 | MA J D, WANG G X, LU G Z, et al. Application of multi architecture modelling method in intelligent electric–vehicle design[J]. International Journal of Production Research, 2025, 63(15): 5493–5511. |
| 24 | BOX G E, DRAPER N R. Empirical model-building and response surfaces[M]. Hoboken: Wiley, 1987. |
| 25 | LINDLAND O I, SINDRE G, SOLVBERG A. Understanding quality in conceptual modeling[J]. IEEE Software, 1994, 11(2), 42- 49. |
| 26 | CHRISTIAN F J Z. Assessing and improving the quality of modeling: a series of empirical studies about the UML[D]. Eindhoven: Eindhoven University of Technology, 2007. |
| 27 | KROGSTIE J. Quality of modelling languages[M]. London: Springer, 2012. |
| 28 | KROGSTIE J. Specialisations of SEQUAL[M]. London: Springer, 2012. |
| 29 | REIJERS H, MENDLING J, RECKER J. Business process quality management[M]. Cham: Springer, 2010. |
| 30 |
NELSON H, . GEERT P, MARCELA G, et al. A conceptual modeling quality framework[J]. Software Quality Journal, 2012, 20, 201- 228.
doi: 10.1007/s11219-011-9136-9 |
| 31 | MOHAGHEGHI P, AAGEDAL J. Evaluating quality in model-driven engineering[C]//Proc. of the International Workshop on Modeling in Software Engineering, 2007. |
| 32 | MOHAGHEGHI P, VEGARD D H. Developing a quality framework for model-driven engineering[C]//Proc. of the International Conference on Model Driven Engineering Languages and Systems, 2007. |
| 33 | MOHAGHEGHI P, DEHLEN V, NEPLE T. Definitions and approaches to model quality in model-based software development–a review of literature[J]. Information and Software Technology, 2009, 51 (12): 1646- 1669. |
| 34 | ARENDT T, TAENTZER G. A tool environment for quality assurance based on the eclipse modeling framework[J]. Automated Software Engineering, 2013, 20: 141−184. |
| 35 | ESPINILLA M, DOMINGUEZET M, ESCALONAA M. A method based on ahp to define the quality model of QuEF[C]//Proc. of the 6th International Conference on Intelligent Systems and Knowledge Engineering, 2011. |
| 36 | MOODY D L. Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions[J]. Data & Knowledge Engineering, 2005, 55(3), 243- 276. |
| 37 | MOODY D L. The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering[J]. IEEE Trans. on Software Engineering, 2009, 35(6), 756- 779. |
| 38 | STORRLE H, FISH A. Towards an operationalization of the “physics of notations” for the analysis of visual languages[C]//Proc. of the International Conference on Model Driven Engineering Languages and System, 2013. |
| 39 |
CHALLENGER M, KARDAS G, TEKINERDOGAN B. A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems[J]. Software Quality Journal, 2016, 24, 755- 795.
doi: 10.1007/s11219-015-9291-5 |
| 40 | AMBLER S W. The elements of UML 2.0 style[M]. Cambridge: Cambridge University Press, 2005. |
| 41 | BASTARRICA M, RIVAS S, ROSSEL P. Designing and implementing a product family of model consistency checkers[C]//Proc. of the 10th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, 2007. |
| 42 | HINDAWI M, LIONEL M, REGIS A, et al. Description and implementation of a UML style guide[C]//Proc. of the International Conference on Model Driven Engineering Languages and Systems, 2009. |
| 43 | SAYEB K, DOMINIQUE R, NADINE M, et al. Quality of modeling languages and models: towards a catalogue of collaborative patterns[C]//Proc. of the 30th INFORSID Congress, 2012. |
| 44 | BALABAN M, AZZAM M, ARNON S, et al. A pattern-based approach for improving model quality[J]. Software & Systems Modeling, 2015, 14(4), 1527- 1555. |
| 45 | JANSEN N, PFEIFFERET J, BERNHARD R, et al. The language of SysML v2 under the magnifying glass[J]. Journal of Object Technology, 2022, 21(3): 1−15. |
| 46 | KENG S, GENERO M, FERNAN A M, et al. A systematic literature review on the quality of UML models[J]. Journal of Database Management, 2011, 22( 3 ): 46−66. |
| 47 | NELSON H. , et al. Quality in conceptual modeling: five examples of the state of the art[J]. Data & Knowledge Engineering, 2005, 55(3, 237- 242. |
| 48 |
NELSON H, . MONARCHI J. Ensuring the quality of conceptual representations[J]. Software Quality Journal, 2007, 15, 213- 233.
doi: 10.1007/s11219-006-9011-2 |
| 49 | PELEG M, DORI D. The model multiplicity problem: experimenting with real-time specification methods[J]. IEEE Trans. on Software Engineering, 2002, 26(8), 742- 759. |
| 50 | 崔京京, 孙鹏飞, 张韬, 等. 基于模型的DoDAF 2.0体系结构域间耦合映射分析[C]// 第3届体系工程学术会议, 2021. |
| CUI J J, SUN P F, ZHANG T, et al. Model based coupling and mapping analysis of DoDAF 2.0 architecture domains[C]//Proc. of the 3rd Conference on System of Systems Engineering, 2021. | |
| 51 | HAESEN R, SNOECK M. Implementing consistency management techniques for conceptual modeling[C]//Proc. of the International Conference on Unified Modeling Language, 2005. |
| 52 | ZHANG Y Z, GEORG J, YU W, et al. A system modeling process based on SysML to support data consistency across system requirement, function, and solution model layers[J]. Journal of Engineering Design, 2023, 34(9), 674- 690. |
| 53 | SULTAN B, APVRILLE L. AI-driven consistency of sysml diagrams[C]//Proc. of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, 2024. |
| 54 | REINHARTZ B, DORI D. OPM vs. UML−experimenting with comprehension and construction of web application models[J]. Empirical Software Engineering, 2005, 10: 57−80. |
| 55 | STARON M, KUZNIARZ L, WOHLIN C. Empirical assessment of using stereotypes to improve comprehension of UML models: a set of experiments[J]. Journal of Systems and Software, 2006, 79(5), 727- 742. |
| 56 | BERENBACH B. The evaluation of large, complex UML analysis and design models[C]// Proc. of the 26th International Conference on Software Engineering, 2004. |
| 57 | EICHELBERGER H. Aesthetics of class diagrams[C]//Proc. of the International Workshop on Visualizing Software for Understanding and Analysis, 2002. |
| 58 | EICHELBERGER H. Nice class diagrams admit good design?[C]//Proc. of the ACM Symposium on Software Visualization, 2003. |
| 59 | MCGILL M J. UML class diagram syntax: an empirical study of comprehension[C]//Proc. of the Conferences in Research and Practice in Information Technology, 2001. |
| 60 | PURCHASE H, ALLDER J, CARRINGTON D. Graph layout aesthetics in UML diagrams: user preferences[J]. Journal of Graph Algorithms and Applications, 2002, 6(3), 255- 279. |
| 61 | 王力冰. 多域复杂产品设计平台M-Design中模型验证和自动布局功能的设计与实现[D]. 杭州: 浙江大学, 2018. |
| WANG L B. The design and implementation of model validation and automatic layout—based on M-Desigen: a platform for modeling of multi-domain system engineering[D]. Hagnzhou: Zhejiang University, 2018. | |
| 62 | HONGO A, NITTA N. Towards a dynamic visualization of complex reverse-engineered object collaboration[C]//Proc. of the 28th Asia-Pacific Software Engineering Conference, 2021. |
| 63 | MASMALI O, BADREDDIN O. Comprehensive model-driven complexity metrics for software systems[C]//Proc. of the IEEE 20th International Conference on Software Quality, Reliability and Security Companion, 2020. |
| 64 | EDWARDS M, HOWELL S. A methodology for system requirements specification and traceability for large real-time complex systems[R]. Dahlgren: Naval Surface Warfare Center, 1991. |
| 65 | HAMILTON V L, BEEBY M L. Issues of traceability in integrating tools[C]//Proc. of the Colloquium on Tools and Techniques for Maintaining Traceability During Design, 1991. |
| 66 | GREENSPAN S J, MCGOWAN C L. Structuring software development for reliability[J]. Microelectronics Reliability, 1978, 17(1): 75−83. |
| 67 | Department of Defense. Military standard 2167A-defensesystem software development[R]. Washington D. C.: Department of Defense, 1988. |
| 68 | PINHEIRO F. An object-oriented tool for tracing requirements[C]// Proc. of the Second International Conference on Requirements Engineering, 1996. |
| 69 | RAMESH B C, STUBBS T P, EDWARDS M. Requirements traceability theory and practice[J]. Annals of Software Engineering, 1997, 3: 397–415. |
| 70 | DORFMAN M. Thayer, standards, guidelines, and examples on system and software requirements engineering[M]. Piscataway: IEEE Press, 1990. |
| 71 | THACKER B H, DOEBLING S W, HEMEZ F M, et al. Concepts of model verification and validation[EB/OL]. [2025-01-01]. https://inis.iaea.org/records/egfyy-d4t03. |
| 72 | DOAN K H, GOGOLLA M. Logical reasoning with object diagrams in a UML and OCL tool[C]//Proc. of the 10th Diagrammatic Representation and Inference International Conference, 2018. |
| 73 |
PEREZ B, PORRES I. Reasoning about UML/OCL class diagrams using constraint logic programming and formula[J]. Information Systems, 2019, 81, 152- 177.
doi: 10.1016/j.is.2018.08.005 |
| 74 | FELDMANN S, HERZIG S J I, KERNSCHMIDT K, et al. A comparison of inconsistency management approaches using a mechatronic manufacturing system design case study[C]//Proc. of the IEEE International Conference on Automation Science and Engineering, 2015. |
| 75 | CLARKE E M. Model checking[C]//Proc. of the International Conference on Foundations of Software Technology and Theoretical Computer Science, 1997. |
| 76 | DING J, RENIERS M, LU J, et al. Integration of modeling and verification for system model based on KARMA language[C]//Proc. of the 18th ACM SIGPLAN International Workshop on Domain-Specific Modeling, 2021. |
| 77 | ESTIVILL-CASTRO V, HEXEL R, MCCOLL M. High-level executable models of reactive real-time systems with logic-labelled finite-state machines and FPGAs[C]//Proc. of the International Conference on ReConFigurable Computing and FPGAs, 2018. |
| 78 | HEHENBERGER P, EGYED A, ZEMAN K. Consistency checking of mechatronic design models[C]//Proc. of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2010. |
| 79 | GIESE M, HELDAL R. From informal to formal specifications in UML[C]//Proc. of the International Conference on the Unified Modeling Language, 2004. |
| 80 | STARON M, KUZNIARZ L, WALLIN L. Case study on a process of industrial MDA realization: determinants of effectiveness[J]. Nordic Journal of Computing, 2004, 11(3, 254- 278. |
| 81 | MCUMBER W, CHENG B H. A general framework for formalizing UML with formal languages[C]//Proc. of the 23rd International Conference on Software Engineering, 2001. |
| 82 | UNHELKAR B. Verification and validation for quality of UML 2.0 models[M]. Hoboken: Wiley, 2005. |
| 83 | BANSIYA J, DAVIS C. A hierarchical model for object-oriented design quality assessment[J]. IEEE Trans. on Software Engineering, 2002, 28(1, 4- 17. |
| 84 | GENERO M. Defining and validating metrics for conceptual models[D]. Cuenca: University of Castilla-La Mancha, 2002. |
| 85 | HENDERSON-SELLERS B. Object-oriented metrics, measures of complexity[M]. Upper Saddle River: Prentice Hall, 1996. |
| 86 | CHIDAMBER S R. KEMERER C F. A metrics suite for object oriented design[J]. IEEE Trans. on Software Engineering, 1994, 20(6), 476- 493. |
| 87 | CHIMIAK O J. Measuring UML models using metrics defined in OCL within the SQUAM framework[C]//Proc. of the International Conference on Model Driven Engineering Languages and Systems, 2011. |
| 88 | DOAN K H, GOGOLLA M. Assessing uml model quality by utilizing metrics[C]//Proc. of the 11th International Conference on the Quality of Information and Communications Technology, 2018. |
| 89 | CHEN J Q. A semantics modeling approach supporting property verification based on satisfiability modulo theories[C]// Proc.of the IEEE International Systems Conference, 2022. |
| 90 |
CHEN J Q. Model-based system engineering supporting production scheduling based on satisfiability modulo theory[J]. Journal of Industrial Information Integration, 2022, 27, 100329.
doi: 10.1016/j.jii.2022.100329 |
| 91 |
WU S X, WANG G Q, LU J Z, et al. Design ontology for cognitive thread supporting traceability management in model-based systems engineering[J]. Journal of Industrial Information Integration, 2024, 40, 100619.
doi: 10.1016/j.jii.2024.100619 |
| 92 | 张浩轩, 梁赞, 王国新, 等. 面向MBSE的起落架系统模型集成技术[J]. 图学学报, 2025, 46(3): 686–696 . |
| ZHANG H X, LIANG Z, WANG G X, et al. Model integration technology for landing gear systems based on MBSE[J]. Journal of Graphics, 2025, 46(3): 686–696 . | |
| 93 | 兰小平, 姚志强, 吴绶玄, 等. 面向MBSE的复杂系统研发模型追溯管理方法[J]. 系统工程学报, 2023, 38 (3): 289- 303. |
| LAN X P, YAO Z Q, WU S X, et al. Traceability management approach for complex system development based on MBSE[J]. Journal of Systems Engineering, 2023, 38 (3): 289- 303. |
| [1] | Jinzhi LU, Guoxin WANG, Xijin TANG, Junjie TANG, Yuejie WEN, Jian TANG, Yangyang ZHANG, Xiaoping LAN, Qi LIU, Junlin LI, Junda MA, Shouxuan WU, Xiaodu HU. MBSE approach for spatial intelligence [J]. Systems Engineering and Electronics, 2025, 47(12): 3877-3889. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||