Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (12): 4083-4090.doi: 10.12305/j.issn.1001-506X.2024.12.17
• Systems Engineering • Previous Articles
Ningbiao TANG1,2, Zhongguang YANG1,*, Xiansheng YU1, Tao HE1, Zhiming CAI1, Jinpei YU1,2
Received:
2023-12-27
Online:
2024-11-25
Published:
2024-12-30
Contact:
Zhongguang YANG
CLC Number:
Ningbiao TANG, Zhongguang YANG, Xiansheng YU, Tao HE, Zhiming CAI, Jinpei YU. Self-gravity analysis and modeling method of space gravitational wave detector[J]. Systems Engineering and Electronics, 2024, 46(12): 4083-4090.
Table 3
Modeling performance of different methods"
方法 | 指标 | 自引力加速度 | ||||||
ax1 | ay1 | az1 | ax2 | ay2 | az2 | 总体 | ||
支持向量回归 | RMSE/(m·s-2) | 2.22e-13 | 3.22e-13 | 1.89e-13 | 9.08e-14 | 1.46e-13 | 1.81e-13 | 2.04e-13 |
MAE/(m·s-2) | 1.48e-13 | 1.98e-13 | 1.75e-13 | 6.28e-14 | 1.25e-13 | 1.77e-13 | 1.48e-13 | |
1-R2 | 1.22e-04 | 8.68e-06 | 1.10e-05 | 3.48e-05 | 5.58e-06 | 1.13e-05 | 1.11e-05 | |
线性回归 | RMSE/(m·s-2) | 2.21e-13 | 3.13e-13 | 1.35e-13 | 8.58e-14 | 6.30e-14 | 9.41e-14 | 1.76e-13 |
MAE/(m·s-2) | 1.48e-13 | 1.71e-13 | 7.14e-14 | 5.15e-14 | 3.46e-14 | 4.92e-14 | 8.77e-14 | |
1-R2 | 1.21e-04 | 8.19e-06 | 5.65e-06 | 3.10e-05 | 1.04e-06 | 3.06e-06 | 8.21e-06 | |
BP神经网络 | RMSE/(m·s-2) | 7.01e-17 | 1.08e-16 | 9.41e-17 | 6.56e-17 | 8.09e-17 | 8.85e-17 | 8.58e-17 |
MAE/(m·s-2) | 5.41e-17 | 8.32e-17 | 7.45e-17 | 4.91e-17 | 6.01e-17 | 6.44e-17 | 6.42e-17 | |
1-R2 | 1.22e-11 | 9.77e-13 | 2.73e-12 | 1.81e-11 | 1.70e-12 | 2.71e-12 | 1.96e-12 | |
多项式回归 | RMSE/(m·s-2) | 6.25e-17 | 6.64e-17 | 7.59e-17 | 5.57e-17 | 6.12e-17 | 7.90e-17 | 6.73e-17 |
MAE/(m·s-2) | 4.70e-17 | 5.04e-17 | 5.94e-17 | 4.02e-17 | 3.72e-17 | 5.49e-17 | 4.82e-17 | |
1-R2 | 9.68e-12 | 3.69e-13 | 1.78e-12 | 1.31e-11 | 9.77e-13 | 2.16e-12 | 1.20e-12 |
1 |
RILES K . Gravitational waves: sources, detectors and searches[J]. Progress in Particle and Nuclear Physics, 2013, 68, 1- 54.
doi: 10.1016/j.ppnp.2012.08.001 |
2 |
GIAMMARCHI M , RICCI F . Gravitational waves, event horizons and black hole observation: a new frontier in fundamental physics[J]. Symmetry, 2022, 14 (11): 2276.
doi: 10.3390/sym14112276 |
3 |
MASTROGIOVANNI S , KARATHANASIS C , GAIR J , et al. Cosmology with gravitational waves: a review[J]. Annalen Der Physik, 2024, 536 (2): 2200180.
doi: 10.1002/andp.202200180 |
4 | LEVERENZ H , FILIPOVIC M . The past, present and future of gravitational wave astronomy[J]. Serbian Astronomical Journal, 2021, 203, 1- 14. |
5 |
ABBOTT B P , ABBOTT R , ABBOTT T D , et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116 (6): 061102.
doi: 10.1103/PhysRevLett.116.061102 |
6 |
FOIT V F , KLEBAN M . Testing quantum black holes with gravitational waves[J]. Classical and Quantum Gravity, 2019, 36 (3): 035006.
doi: 10.1088/1361-6382/aafcba |
7 |
SESANA A . Black hole science with the laser interferometer space antenna[J]. Frontiers in Astronomy and Space Sciences, 2021, 8, 601646.
doi: 10.3389/fspas.2021.601646 |
8 |
AMARO-SEOANE P , ANDREWS J , ARCA SEDDA M , et al. Astrophysics with the laser interferometer space antenna[J]. Living Reviews in Relativity, 2023, 26 (1): 2.
doi: 10.1007/s41114-022-00041-y |
9 |
CRUISE A M . Gravitational wave science from space[J]. AVS Quantum Science, 2022, 4 (2): 025301.
doi: 10.1116/5.0072851 |
10 |
RUAN W H , GUO Z K , CAI R G , et al. Taiji program: gravitational-wave sources[J]. International Journal of Modern Physics A, 2020, 35 (17): 2050075.
doi: 10.1142/S0217751X2050075X |
11 | AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[EB/OL]. [2023-12-27]. http://arxiv.org/abs/1702.00786. |
12 |
HU W R , WU Y L . The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4 (5): 685- 686.
doi: 10.1093/nsr/nwx116 |
13 |
LUO J , CHEN L S , DUAN H Z , et al. Tianqin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33 (3): 035010.
doi: 10.1088/0264-9381/33/3/035010 |
14 |
JENNRICH O . LISA technology and instrumentation[J]. Classical and Quantum Gravity, 2009, 26 (15): 153001.
doi: 10.1088/0264-9381/26/15/153001 |
15 |
MARTENS W , JOFFRE E . Trajectory design for the ESA LISA mission[J]. The Journal of the Astronautical Sciences, 2021, 68 (2): 402- 443.
doi: 10.1007/s40295-021-00263-2 |
16 |
LUO Z R , WANG Y , WU Y L , et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021 (5): 05A108.
doi: 10.1093/ptep/ptaa083 |
17 | MEI J W , BAI Y Z , BAO J H , et al. The Tianqin project: current progress on science and technology[J]. Progress of Theoretical and Experimental Physics, 2021, 2021 (5): 05A. |
18 |
ARMANO M , AUDLEY H , BAIRD J , et al. Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 μHz[J]. Physical Review Letters, 2018, 120 (6): 061101.
doi: 10.1103/PhysRevLett.120.061101 |
19 |
LUO Z R , ZHANG M , WU Y L . Recent status of Taiji program in China[J]. Chinese Journal of Space Science, 2022, 42 (4): 536- 538.
doi: 10.11728/cjss2022.04.yg03 |
20 |
LUO J , BAI Y Z , CAI L , et al. The first round result from the Tianqin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37 (18): 185013.
doi: 10.1088/1361-6382/aba66a |
21 | 方子若, 侍行剑, 陈琨, 等. 引力波探测航天器噪声分解及电磁力噪声仿真[J]. 深空探测学报, 2023, 10 (3): 334- 342. |
FANG Z R , SHI X J , CHEN K , et al. Gravitational wave detection spacecraft noise decomposition and electromagnetic force noise simulation[J]. Journal of Deep Space Exploration, 2023, 10 (3): 334- 342. | |
22 | 冯建朝, 张晓峰, 梁鸿, 等. 太极二号卫星精密热控关键技术及试验验证[J]. 宇航学报, 2023, 44 (1): 132- 142. |
FENG J C , ZHANG X F , LIANG H , et al. Key technology and experimental verification of precision thermal control of Taiji 2 satellite[J]. Journal of Astronautics, 2023, 44 (1): 132- 142. | |
23 |
ZHAO Y , SHEN J , FANG C , et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J]. Applied Optics, 2021, 60 (2): 438- 444.
doi: 10.1364/AO.405467 |
24 | GOPSTEIN A M , HAILE W B , MERKOWITZ S M . Self-gravity analysis and visualization tool For LISA[J]. AIP Conference Proceedings, 2006, 873 (1): 571- 575. |
25 |
STEBBINS R T , BENDER P L , HANSON J , et al. Current error estimates for LISA spurious accelerations[J]. Classical and Quantum Gravity, 2004, 21 (5): S653.
doi: 10.1088/0264-9381/21/5/039 |
26 |
BRANDT N , FICHTER W , KERSTEN M , et al. End-to-end modeling for drag-free missions with application to LISA pathfinder[J]. IFAC Proceedings Volumes, 2004, 37 (6): 241- 246.
doi: 10.1016/S1474-6670(17)32180-8 |
27 |
MERKOWITZ S M , CONKEY S , HAILE W B , et al. Structural, thermal, optical and gravitational modelling for LISA[J]. Classical and Quantum Gravity, 2004, 21 (5): S603.
doi: 10.1088/0264-9381/21/5/032 |
28 |
SWANK A J . Gravitational mass attraction: properties of a right-angled parallelepiped for the LISA drag-free system[J]. Classical and Quantum Gravity, 2006, 23 (10): 3437.
doi: 10.1088/0264-9381/23/10/014 |
29 | 林志勇. 空间引力波探测自引力仿真技术研究[D]. 西安: 长安大学, 2023. |
LIN Z Y. Research on self-gravitational simulation technology of space gravitational wave detection[D]. Xi'an: Chang'an University, 2023. | |
30 | 高志勇, 王上, 王智. 基于FEM的引力参考传感器自引力计算与补偿[J]. 中国空间科学技术, 2024, 44 (2): 89- 97. |
GAO Z Y , WANG S , WANG Z . Calculation and compensation of self-gravity for gravitational reference sensor based on finite element method[J]. Chinese Space Science and Technology, 2024, 44 (2): 89- 97. | |
31 |
EVANS J P . Plan for compensation of self-gravity on ST-7/DRS[J]. Classical and Quantum Gravity, 2005, 22 (10): S177.
doi: 10.1088/0264-9381/22/10/007 |
32 |
MERKOWITZ S M , HAILE W B , CONKEY S , et al. Self-gravity modelling for LISA[J]. Classical and Quantum Gravity, 2005, 22 (10): S395.
doi: 10.1088/0264-9381/22/10/035 |
[1] | Gaoyang ZHAO, Yong LIU, Pingjie ZHU, Bing XIANG, Hongjuan ZHOU. Simulation of geomagnetic anomaly of underwater vehicle based on finite element method [J]. Systems Engineering and Electronics, 2024, 46(7): 2191-2200. |
[2] | Xin ZHANG, Jianli HAN, Yongqiang LI, Yao WANG. High accelerated life test simulation of secondary power supply on missile based on finite element analysis [J]. Systems Engineering and Electronics, 2021, 43(4): 1153-1160. |
[3] | Tengda LI, Gang FENG, Shaowei LIU, Jianming SHI, Chengli FAN. Simulation analysis of electromagnetic characteristics of copper-based composite quadrupole orbit [J]. Systems Engineering and Electronics, 2021, 43(11): 3054-3063. |
[4] | CHEN Lijuan, DU Jianli, CHEN Junyu. Bayesian filtering estimation approach based on finite element method [J]. Systems Engineering and Electronics, 2017, 39(10): 2305-2311. |
[5] | TANG Ning, LI Yuan, LIU Ping, ZHANG Kai-fu. Bi-directional obtaining and offline compensation method of locating error for airplane panel [J]. Journal of Systems Engineering and Electronics, 2012, 34(3): 631-636. |
[6] | WAN Ting,ZHU Jian,CHEN Ru-shan. Analysis of electromagnetic scattering problems by combining FEBI with FETI method [J]. Journal of Systems Engineering and Electronics, 2010, 32(9): 1854-1858. |
[7] | SHENG Yijun,JIA Huiliang,CHEN Rushan. Analysis of electromagnetic scattering by non-conforming domain decomposition method [J]. Journal of Systems Engineering and Electronics, 2010, 32(10): 2111-2115. |
[8] | LAN Pei-feng, QIU Yuan-ying, SHAO Xiao-dong. Novel approach to electromechanical coupling analysis of reflector antennas [J]. Journal of Systems Engineering and Electronics, 2009, 31(2): 296-299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||