Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (11): 3595-3604.doi: 10.12305/j.issn.1001-506X.2024.11.01
• Electronic Technology • Previous Articles Next Articles
Bowen XIAO1, Zeyuan MA2, Tianyu LU3, Qunli XIA1,*
Received:
2023-09-13
Online:
2024-10-28
Published:
2024-11-30
Contact:
Qunli XIA
CLC Number:
Bowen XIAO, Zeyuan MA, Tianyu LU, Qunli XIA. On-line identification method for models of platform seeker disturbance rejection rate[J]. Systems Engineering and Electronics, 2024, 46(11): 3595-3604.
Table 2
First-order DRR transfer function"
干扰参数 | 传递函数 |
弹簧力矩+阻尼力矩+Rdom | |
弹簧力矩 | |
阻尼力矩 | |
天线罩误差Rdom | |
弹簧力矩+阻尼力矩 | |
弹簧力矩+Rdom | |
阻尼力矩+Rdom |
1 |
HEMANT R S , SHRIPAD P M . Tactical air warfare: generic model for aircraft susceptibility to infrared guided missiles[J]. Aerospace Science and Technology, 2011, 15 (4): 249- 260.
doi: 10.1016/j.ast.2010.07.008 |
2 |
JIANG H H , JIA H G , WEI Q . Analysis of zenith pass problem and tracking strategy design for roll-pitch seeker[J]. Aerospace Science and Technology, 2012, 23 (1): 345- 351.
doi: 10.1016/j.ast.2011.08.011 |
3 | 李富贵, 夏群利, 崔晓曦, 等. 导引头DRR寄生回路对视线角速度提取的影响[J]. 宇航学报, 2013, 34 (8): 1072- 1077. |
LI F G , XIA Q L , CUI X X , et al. Effect of seeker disturbance rejection rate parasitic loop on line of sight rate extraction[J]. Journal of Astronautics, 2013, 34 (8): 1072- 1077. | |
4 |
DU X , LV R , TU H F , et al. The research on infrared seeker with disturbance rejection effect parasitic[J]. International Journal for Light and Electron Optics, 2018, 170, 409- 419.
doi: 10.1016/j.ijleo.2018.05.107 |
5 | 鲁天宇. 相控阵雷达导引头在对空导弹制导系统中的应用研究[D]. 北京: 北京理工大学, 2019. |
LU T Y. Application of phased array radar seeker to anti-aircraft missile guidance system[D]. Beijing: Beijing Institute of Technology, 2019. | |
6 | SONG J M , CAI G H , KONG L X , et al. Precision analysis of the semi-strapdown homing guided system[J]. Journal of Aerospace Engineering, 2013, 27 (1): 151- 167. |
7 |
LI W , WEN Q Q , YANG Y . Stability analysis of spinning missiles induced by seeker disturbance rejection rate parasitical loop[J]. Ae-rospace Science and Technology, 2019, 90, 194- 208.
doi: 10.1016/j.ast.2019.04.013 |
8 |
XIAO B W , LU T Y , MA Z Y , et al. Research on the influence of the disturbance rejection rate of a roll-pitch seeker on stable tracking characteristics[J]. Aerospace, 2023, 10 (11): 940.
doi: 10.3390/aerospace10110940 |
9 |
王嘉鑫, 林德福, 祁载康, 等. 全捷联相控阵雷达导引头DRR寄生回路研究[J]. 北京理工大学学报, 2013, 33 (11): 1124- 1128.
doi: 10.3969/j.issn.1001-0645.2013.11.005 |
WANG J X , LIN D F , QI Z K , et al. Study on disturbance rejection rate parasitical loop of strapdown phased arrayof radar seeker[J]. Transactions of Beijing Institute of Technology, 2013, 33 (11): 1124- 1128.
doi: 10.3969/j.issn.1001-0645.2013.11.005 |
|
10 |
DU X , XIA Q L . The research of guidance performance of the phased array seeker with platform for air-to-air missile[J]. Optik, 2016, 127 (22): 10322- 10334.
doi: 10.1016/j.ijleo.2016.08.071 |
11 |
DU X , XIA Q L . The calibration method of phased array seeker with the phantom-bit technology[J]. Optik, 2016, 127 (18): 7225- 7234.
doi: 10.1016/j.ijleo.2016.05.066 |
12 |
BAI R , XIA Q L , DU X . The study of guidance performance of a phased array seeker with platform[J]. Optik, 2017, 132, 9- 23.
doi: 10.1016/j.ijleo.2016.12.022 |
13 |
LI Y , WEN X H , LI W , et al. Influence of roll-pitch seeker DRR and parasitic loop on Lyapunov stability of guidance system[J]. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1509- 1526.
doi: 10.23919/JSEE.2021.000127 |
14 |
李富贵, 夏群利, 祁载康, 等. 全捷联导引头寄生回路影响与辨识校正[J]. 系统工程与电子技术, 2013, 35 (8): 1717- 1722.
doi: 10.3969/j.issn.1001-506X.2013.08.22 |
LI F G , XIA Q L , QI Z K , et al. Effect of parasitic loop on strap-down seeker and compensated with identification method[J]. Systems Engineering and Electronics, 2013, 35 (8): 1717- 1722.
doi: 10.3969/j.issn.1001-506X.2013.08.22 |
|
15 |
LIU S X , DU X , XIA Q L . An on-line compensation method for the disturbance rejection rate of seekers[J]. International Journal for Light and Electron Optics, 2018, 157, 1306- 1318.
doi: 10.1016/j.ijleo.2017.12.084 |
16 |
LIN S Y , LIN D F , WANG W . A novel online estimation and compensation method for strapdown phased array seeker disturbance rejection effect using extended state kalman filter[J]. IEEE Access, 2019, 7, 172330- 172340.
doi: 10.1109/ACCESS.2019.2956256 |
17 |
廖志忠, 王琪. 雷达导引头指向误差对导弹制导的影响与对策[J]. 系统工程与电子技术, 2021, 43 (2): 519- 525.
doi: 10.12305/j.issn.1001-506X.2021.02.26 |
LIAO Z Z , WANG Q . Influence and countermeasures of radar seeker pointing error on missile guidance[J]. Systems Engineering and Electronics, 2021, 43 (2): 519- 525.
doi: 10.12305/j.issn.1001-506X.2021.02.26 |
|
18 | 王琪, 廖志忠, 燕飞. 基于Rao-Blackwellised粒子滤波的相控阵导引头指向误差斜率在线估计[J]. 电子与信息学报, 2022, 44 (9): 3178- 3185. |
WANG Q , LIAO Z Z , YAN F . Online estimation for phased array seeker pointing error slope using Rao-Blackwellised particle filters[J]. Journal of Electronics & Information Technology, 2022, 44 (9): 3178- 3185. | |
19 | LI W , LIU S X , ZHANG W J , et al. On-line compensation for the disturbance rejection rate of a platform seeker based on a high-gain extended state observer[J]. International Journal of Aerospace Engineering, 2019, 2019 (18): 3106732. |
20 |
VU V P , WANG W J . State/disturbance observer and controller synthesis for the T-S fuzzy system with an enlarged class of disturbances[J]. IEEE Trans.on Fuzzy Systems, 2018, 26 (6): 3645- 3659.
doi: 10.1109/TFUZZ.2018.2841858 |
21 |
SUN Y J , LI S H . Bearing fault diagnosis based on optimal convolution neural network[J]. Measurement, 2022, 190, 110702.
doi: 10.1016/j.measurement.2022.110702 |
22 |
WANG S Z , CAO J N , YU P S . Deep learning for spatio-temporal data mining: a survey[J]. IEEE Trans.on Knowledge and Data Engineering, 2022, 34 (8): 3681- 3700.
doi: 10.1109/TKDE.2020.3025580 |
23 |
ZHANG P , ZHENG J , LIN H L , et al. Vehicle trajectory data mining for artificial intelligence and real-time traffic information extraction[J]. IEEE Trans.on Intelligent Transportation Systems, 2023, 24 (11): 13088- 13098.
doi: 10.1109/TITS.2022.3178182 |
24 |
CHEN Z Y , WU J , DENG C , et al. Deep attention relation network: a zero-shot learning method for bearing fault diagnosis under unknown domains[J]. IEEE Trans.on Reliability, 2023, 72 (1): 79- 89.
doi: 10.1109/TR.2022.3177930 |
25 | CHEN J B , HUANG R Y , ZHAO K , et al. Multiscale convolutional neural network with feature alignment for bearing fault diagnosis[J]. IEEE Trans.on Instrumentation and Measurement, 2021, 70, 1- 10. |
26 |
WEN L , LI X Y , GAO L , et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Trans.on Industrial Electronics, 2018, 65 (7): 5990- 5998.
doi: 10.1109/TIE.2017.2774777 |
27 |
SHE B , WANG X . Machinery new emerge fault diagnosis based on deep convolution variational autoencoder and adaptive label propagation[J]. IEEE Access, 2022, 10, 19365- 19378.
doi: 10.1109/ACCESS.2022.3151799 |
28 |
ZHANG S , LIU Z W , CHEN Y P , et al. Selective kernel convolution deep residual network based on channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis[J]. ISA Transactions, 2023, 133, 369- 383.
doi: 10.1016/j.isatra.2022.06.035 |
29 |
RUAN D W , WANG J , YAN J P , et al. CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis[J]. Advanced Engineering Informatics, 2023, 55, 101877.
doi: 10.1016/j.aei.2023.101877 |
30 |
CHEN Z Y , QIN W , HE G L , et al. Explainable deep ensemble model for bearing fault diagnosis under variable conditions[J]. IEEE Sensors Journal, 2023, 23 (15): 17737- 17750.
doi: 10.1109/JSEN.2023.3281505 |
31 |
HUANG T , ZHANG Q , TANG X A . A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems[J]. Artificial Intelligence Review, 2022, 55 (2): 1289- 1315.
doi: 10.1007/s10462-021-09993-z |
32 |
GUO Y R , MAO J , ZHAO M . Rolling bearing fault diagnosis method based on attention CNN and BiLSTM network[J]. Neural Processing Letters, 2023, 55 (3): 3377- 3410.
doi: 10.1007/s11063-022-11013-2 |
33 | 丁策. 机载光电稳定平台的分数阶控制研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2014. |
DING C. On the fractional order control of airborne photoelectric stabilized platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014. |
[1] | Wei FANG, Yu WANG, Wenjun YAN, Chong LIN. Symbolized flight action recognition based on neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 737-745. |
[2] | Qing DONG, Benwei LI, Siqi YAN, Renjun QIAN. Prediction of turboshaft engine acceleration process performance parameters based on BSO-ELM [J]. Systems Engineering and Electronics, 2021, 43(8): 2181-2188. |
[3] | Shuai ZHAO, Songtao LIU, Huiyang WANG. LPI radar waveform recognition algorithm based on PSO-CNN [J]. Systems Engineering and Electronics, 2021, 43(12): 3552-3563. |
[4] | YANG Sihan, PENG Hua, XU Mankun, PAN Yiwei, HOU Xiaoyu. Ultra short wave specific signal spectrogram recognition based on convolution neural network [J]. Systems Engineering and Electronics, 2019, 41(4): 744-751. |
[5] | WANG Nianbin, HE Ming, WANG Hongbin, LANG Zeyu. Underwater target feature extraction method based on convolutional neural network [J]. Systems Engineering and Electronics, 2018, 40(6): 1197-1203. |
[6] | ZHANG Dao-chi, XIA Qun-li, Wen Qiu-qiu. Guidance signal delay disturbance rejection rate suppress method for strapdown guidance system [J]. Systems Engineering and Electronics, 2016, 38(11): 2598-2603. |
[7] | YAN Qintao1, GUO Tao2, DU Xiao1, XIA Qunli1. Research on angular rate of LOS extraction technology for#br# phased array radar seeker on platform [J]. Systems Engineering and Electronics, 2015, 37(10): 2329-2334. |
[8] | YU Xiang-tao, WEI Chao, WU Zhi-zhong, ZHANG Lan, LIU Song. Controlled object modeling in the accelerometer unit temperature#br# control system based on PSVR [J]. Systems Engineering and Electronics, 2014, 36(9): 1833-1837. |
[9] | DENG Ke, CONG Shuang, KONG De-jie, SHEN Hong-hai, SHANG Wei-wei. Experimental nonlinear modeling of velocity loop in gyro stabilized platform [J]. Journal of Systems Engineering and Electronics, 2013, 35(4): 807-811. |
[10] | LIU Fu-cai, DOU Jin-mei, Wang Shu-en. T-S fuzzy model identification based on intelligent optimization algorithms [J]. Systems Engineering and Electronics, 2013, 35(12): 2643-2650. |
[11] | CHEN Cai, GUO Gang, SU Bao-ku. Research on error model identification of inertial navigation platform based on centrifuge testing [J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1737-1740. |
[12] | XU Jiangtao, CUI Naigang, MU Rongjun. Drift model identification methods for inertial platform based on Elman network [J]. Journal of Systems Engineering and Electronics, 2010, 32(7): 1497-1500. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||