Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1135-1142.doi: 10.12305/j.issn.1001-506X.2024.04.01
• Electronic Technology • Previous Articles Next Articles
Yong XU, Dejun FENG, Junjie WANG, Zhiming XU, Ran SUI
Received:
2022-06-13
Online:
2024-03-25
Published:
2024-03-25
Contact:
Dejun FENG
CLC Number:
Yong XU, Dejun FENG, Junjie WANG, Zhiming XU, Ran SUI. Reconfigurable simulation method for dynamic HRRP feature of air target[J]. Systems Engineering and Electronics, 2024, 46(4): 1135-1142.
1 | GAO P W , ZHI Y F , HU C F . Dynamic characteristics analysis and applications of electromagnetic environment based on group perception[J]. International Journal of Antennas and Propagation, 2022, 2022 (2): 1- 10. |
2 |
AI X F , XU Z M , WU Q H , et al. Parametric representation and application of micro-Doppler characteristics for cone-shaped space targets[J]. IEEE Sensors Journal, 2019, 19 (24): 11839- 11849.
doi: 10.1109/JSEN.2019.2937995 |
3 |
HUA X , YUAN W W , LEI B . Fast RCS modeling for dynamic target tracking[J]. International Journal on Smart Sensing and Intelligent Systems, 2015, 8 (4): 1956- 1976.
doi: 10.21307/ijssis-2017-838 |
4 | 汤永浩, 干鹏, 张斌, 等. 雷达目标回波模拟技术发展现状与展望[J]. 航天电子对抗, 2020, 36 (6): 28- 34. |
TANG Y H , GAN P , ZHANG B , et al. Development status and prospect of radar target echo simulation technology[J]. Aero-space Electronic Warfare, 2020, 36 (6): 28- 34. | |
5 |
SCHOEDER P , SCHWEIZER B , GRATHWOHL A , et al. Multitarget simulator for automotive radar sensors with unknown chirp-sequence modulation[J]. IEEE Microwave and Wireless Components Letters, 2021, 31 (9): 1086- 1089.
doi: 10.1109/LMWC.2021.3088882 |
6 |
SCHEIBLHOFER W , FEGER R , HADERER A , et al. Concept and realization of a low-cost multi-target simulator for CW and FMCW radar system calibration and testing[J]. International Journal of Microwave and Wireless Technologies, 2018, 10 (2): 207- 215.
doi: 10.1017/S1759078718000028 |
7 |
DIEWALD A , NUSS B , PAULI M , et al. Arbitrary angle of arrival in radar target simulation[J]. IEEE Trans.on Microwave Theory and Techniques, 2022, 70 (1): 513- 520.
doi: 10.1109/TMTT.2021.3106268 |
8 |
NIU G Z , LIU Y M , BAI B W , et al. A numerical simulation method of radar echo from a high-speed target[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20 (10): 1958- 1962.
doi: 10.1109/LAWP.2021.3101213 |
9 |
KORNER G , HOFFMANN M , NEIDHARDT S , et al. Multirate universal radar target simulator for an accurate moving target simulation[J]. IEEE Trans.on Microwave Theory and Techniques, 2021, 69 (5): 2730- 2740.
doi: 10.1109/TMTT.2021.3060817 |
10 | 邢世其, 刘业民, 李永祯, 等. 箔条在现代海战场中的应用及现状[J]. 航天电子对抗, 2021, 37 (2): 58- 64. |
XING S Q , LIU Y M , LI Y Z , et al. Application and status of chaff in modern sea battlefield[J]. Aerospace Electronic Warfare, 2021, 37 (2): 58- 64. | |
11 | 马德有, 杨晨晨, 王毅, 等. 加载龙伯透镜反射器的靶标RCS改型设计与仿真[J]. 火力与指挥控制, 2016, 41 (10): 155-158, 162. |
MA D Y , YANG C C , WANG Y , et al. Design and simulation of targets' RCS loaded with Luneburg-lens reflectors[J]. Fire Control & Command Control, 2016, 41 (10): 155-158, 162. | |
12 | 饶聃, 王学田. 厘米波段三面角反射器阵列电磁靶船设计[J]. 微波学报, 2018, 34 (S1): 41- 44. |
RAO D , WANG X T . Design of trihedral corner reflector array electromagnetic target ship in centimeter wave band[J]. Journal of Microwaves, 2018, 34 (S1): 41- 44. | |
13 |
LUO Y , GUO L X , ZUO Y C , et al. Time-domain scattering characteristics and jamming effectiveness in corner reflectors[J]. IEEE Access, 2021, 9, 15696- 15707.
doi: 10.1109/ACCESS.2021.3053116 |
14 |
ACHOURI K , CALOZ C . Design, concepts, and applications of electromagnetic metasurfaces[J]. Nanophotonics, 2018, 7 (6): 1095- 1116.
doi: 10.1515/nanoph-2017-0119 |
15 | LUO X G . Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58, 594201. |
16 |
SUN S L , HE Q , HAO J M , et al. Electromagnetic metasurfaces: physics and applications[J]. Advances in Optics and Photonics, 2019, 11 (2): 380- 479.
doi: 10.1364/AOP.11.000380 |
17 |
LI H Y , CAO Q S , LIU L L , et al. An improved multifunctional active frequency selective surface[J]. IEEE Trans.on Antennas and Propagation, 2018, 66 (4): 1854- 1862.
doi: 10.1109/TAP.2018.2800727 |
18 | PHON R , GHOSH S , LIM S . Novel multifunctional reconfi-gurable active frequency selective surface[J]. IEEE Trans.on Antennas and Propagation, 2018, 67 (3): 1709- 1718. |
19 |
ZHAO Y L , FU J H , WANG Z F , et al. Design of a broadband switchable active frequency selective surfaces based on modified diode model[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21 (7): 1378- 1382.
doi: 10.1109/LAWP.2022.3168983 |
20 |
LIANG J W , CAO Q S , WANG Y , et al. A multifunctional and miniaturized flexible active frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20 (12): 2549- 2553.
doi: 10.1109/LAWP.2021.3118689 |
21 |
CHANG Y M , WANG L , LI B , et al. Phase switched screen for radar cloaking based on reconfigurable artificial magnetic conductor[J]. IEEE Trans.on Electromagnetic Compatibility, 2021, 63 (5): 1417- 1422.
doi: 10.1109/TEMC.2021.3069017 |
22 |
WANG J J , FENG D J , XU L T , et al. Synthetic aperture radar image modulation using phase-switched screen[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (5): 911- 915.
doi: 10.1109/LAWP.2018.2823079 |
23 | CHANG Y M , JIANG H J , WANG L , et al. Tri-band phase switched screen based on time modulation[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32 (4): e23058. |
24 | LING G P, GONG W J, CHANG Y M, et al. Reconfigurable multi-band phase-switched-screen based on artificial magnetic conductor surface[C]//Proc. of the International Conference on Microwave and Millimeter Wave Technology, 2021. |
25 |
LI W , VALENTINE J . Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 2014, 14 (6): 3510- 3514.
doi: 10.1021/nl501090w |
26 |
BEHERA J K , LIU K , LIAN M , et al. A reconfigurable hyperbolic metamaterial perfect absorber[J]. Nanoscale Advances, 2021, 3 (6): 1758- 1766.
doi: 10.1039/D0NA00787K |
27 |
ZHANG B L , LI Z X , HU Z D , et al. Analysis of a bidirectional metamaterial perfect absorber with band-switch ability for multifunctional optical applications[J]. Results in Physics, 2022, 34, 105313.
doi: 10.1016/j.rinp.2022.105313 |
28 |
DONG F L , CHU W G . Multichannel-independent information encoding with optical metasurfaces[J]. Advanced Materials, 2019, 31 (45): 1804921.
doi: 10.1002/adma.201804921 |
29 |
CUI T J , LIU S , ZHANG L . Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5 (15): 3644- 3668.
doi: 10.1039/C7TC00548B |
30 |
WU R Y , SHI C B , LIU S , et al. Addition theorem for digital coding metamaterials[J]. Advanced Optical Materials, 2018, 6 (5): 1701236.
doi: 10.1002/adom.201701236 |
31 | XU L T , FENG D J , WANG X S . Matched-filter properties of linear-frequency-modulation radar signal reflected from a phase-switched screen[J]. IET Radar, Sonar & Navigation, 2016, 10 (2): 318- 324. |
[1] | Jingming SUN, Shengkang YU, Jun SUN. Radar small sample target recognition method based on meta learning and its improvement [J]. Systems Engineering and Electronics, 2022, 44(6): 1839-1845. |
[2] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[3] | Junjie WANG, Dejun FENG, Weidong HU. Two-dimensional SAR image modulation method based on time-varying materials [J]. Systems Engineering and Electronics, 2022, 44(2): 455-462. |
[4] | Bo DAN, Zhequan FU, Shan GAO, Tao JIAN. Full-polarization high resolution range profile recognition technology for sea surface target based on convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(1): 108-116. |
[5] | Chaoying HUO, Hua YAN, Xuejian FENG, Hongcheng YIN, Xiaoyu XING, Jinwen LU. Correlation research between deep features of HRRP sparse auto-encoder and scattering center features [J]. Systems Engineering and Electronics, 2021, 43(11): 3040-3053. |
[6] | Liang ZHANG, Wei YANG, Weijie LI, Xiaoqi YANG, Yongxiang LIU. Classification of radar clutter amplitude statistical model based on complex-valued convolutional-ResNet [J]. Systems Engineering and Electronics, 2021, 43(11): 3086-3097. |
[7] | Wang LU, Yasheng ZHANG, Can XU, Caiyong LIN. HRRP target recognition method based on bispectrum-spectrogram feature and deep convolutional neural network [J]. Systems Engineering and Electronics, 2020, 42(8): 1703-1709. |
[8] | Qian XIANG, Xiaodan WANG, Rui LI, Jie LAI, Guoling ZHANG. HRRP image recognition of midcourse ballistic targets based on DCNN [J]. Systems Engineering and Electronics, 2020, 42(11): 2426-2433. |
[9] | LIU Dai, ZHAO Yongbo, ZHOU Yongwei, CHEN Mingzhe, LI Wei. Maneuvering target tracking algorithm aided by a high resolution range profile [J]. Systems Engineering and Electronics, 2019, 41(9): 1967-1972. |
[10] | WANG Caiyun, HUANG Panpan, LI Xiaofei, WANG Jianing, ZHAO Huanyue. Radar HRRP target recognition based on AEPSO-SVM algorithm [J]. Systems Engineering and Electronics, 2019, 41(9): 1984-1989. |
[11] | GUO Pengcheng, LIU Zheng, LUO Dingli. Radar HRRP clutter robust target recognition method based on double anomaly detection [J]. Systems Engineering and Electronics, 2019, 41(10): 2221-2226. |
[12] | YUAN Jiawen, LIU Wenbo, ZHANG Gong. Application of dictionary learning algorithm in HRRP based on statistical modeling [J]. Systems Engineering and Electronics, 2018, 40(4): 762-767. |
[13] | LI Bin, LI Hui. HRRP feature extraction based on mixtures of probabilistic principal component analysis [J]. Systems Engineering and Electronics, 2017, 39(1): 1-7. |
[14] | WU Jia-ni, CHEN Yong-guang, FENG De-jun, WANG Xue-song. Target recognition for polarimetric HRRP based on pre-classification and model matching [J]. Systems Engineering and Electronics, 2016, 38(9): 1969-1974. |
[15] | NING Chao, HUANG Jing, HUANG Pei-kang. Solution for characteristic parameters of precession cone-shaped #br# target using HRRP [J]. Systems Engineering and Electronics, 2014, 36(4): 650-655. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||