Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 729-739.doi: 10.12305/j.issn.1001-506X.2024.02.37
• Communications and Networks • Previous Articles
Kai QIN1, Shushi GU1,2,*, Zhikai ZHANG1, Yu WANG1, Qian LIU3, Chen ZHAO3, Qinyu ZHANG1,2
Received:
2022-11-15
Online:
2024-01-25
Published:
2024-02-06
Contact:
Shushi GU
CLC Number:
Kai QIN, Shushi GU, Zhikai ZHANG, Yu WANG, Qian LIU, Chen ZHAO, Qinyu ZHANG. Communication tower deployment scheme for lunar surface multi-device communication networks[J]. Systems Engineering and Electronics, 2024, 46(2): 729-739.
Table 5
Comparison of coverage of Proximity-1 in UHF band deployment schemes"
方案 | 场强阈值/dBm | 覆盖率/% | 通信速率 |
1 MS | -103 | 34.33 | 1 Mbps |
-110 | 42.49 | 512 kbps | |
-117 | 45.55 | 256 kbps | |
-130 | 50.46 | 64 kbps | |
集中式 1 MS+2 SS | -103 | 65.66 | 1 Mbps |
-110 | 73.92 | 512 kbps | |
-117 | 82.72 | 256 kbps | |
-130 | 88.66 | 64 kbps | |
分布式 1 MS+2 SS | -103 | 58.07 | 1 Mbps |
-110 | 73.09 | 512 kbps | |
-117 | 83.31 | 256 kbps | |
-130 | 88.31 | 64 kbps | |
集中式 1 MS+4 SS | -103 | 77.79 | 1 Mbps |
-110 | 87.98 | 512 kbps | |
-117 | 96.02 | 256 kbps | |
-130 | 99.01 | 64 kbps | |
分布式 1 MS+4 SS | -103 | 78.47 | 1 Mbps |
-110 | 90.33 | 512 kbps | |
-117 | 96.42 | 256 kbps | |
-130 | 99.09 | 64 kbps |
Table 6
Comparison of coverage effect of LTE and Wi-Fi in S band deployment schemes"
通信协议 | 方案 | 场强阈值/dBm | 覆盖率/% | 通信速率/Mbps | 带宽/MHz | 调制方式 | 天线分集 |
4G LTE | 集中式 1 MS+4 SS | -84 | 8.14 | 30 | 20 | QPSK | 1×1 |
-91 | 25.01 | 20 | 20 | QPSK | 1×1 | ||
-96 | 49.84 | 10 | 20 | QPSK | 1×1 | ||
-103 | 65.26 | 1.5 | 3 | QPSK | 1×1 | ||
分布式 1 MS+4 SS | -84 | 9.01 | 30 | 20 | QPSK | 1×1 | |
-91 | 27.19 | 20 | 20 | QPSK | 1×1 | ||
-96 | 45.57 | 10 | 20 | QPSK | 1×1 | ||
-103 | 56.96 | 1.5 | 3 | QPSK | 1×1 | ||
Wi-Fi | 集中式 1 MS+4 SS | -75 | 4.06 | 37 | 20 | QPSK | 2×2 |
-78 | 6.02 | 20 | 20 | QPSK | 1×1 | ||
-85 | 17.42 | 13 | 20 | BPSK | 2×2 | ||
-89 | 31.44 | 7 | 20 | BPSK | 1×1 | ||
分布式 1 MS+4 SS | -75 | 3.74 | 37 | 20 | QPSK | 2×2 | |
-78 | 5.16 | 20 | 20 | QPSK | 1×1 | ||
-85 | 9.23 | 13 | 20 | BPSK | 2×2 | ||
-89 | 12.95 | 7 | 20 | BPSK | 1×1 |
1 | 吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6 (5): 405- 416. |
WU W R , LIU J Z , TANG Y H , et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6 (5): 405- 416. | |
2 | STAUDINGER E, SHUTIN D, MANSS C, et al. Swarm technologies for future space exploration missions[C]//Proc. of the 14th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2018. |
3 | 于登云, 张哲, 泮斌峰, 等. 深空探测人工智能技术研究与展望[J]. 深空探测学报, 2020, 7 (1): 11- 23. |
YU D Y , ZHANG Z , PAN B F , et al. Development and trend of artificial intelligent in deep space exploration[J]. Journal of Deep Space Exploration, 2020, 7 (1): 11- 23. | |
4 | 叶培建, 孟林智, 马继楠, 等. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6 (4): 303- 316. |
YE P J , MENG L Z , MA J N , et al. Suggestions on artificial intelligence technology application and development in deep space exploration[J]. Journal of Deep Space Exploration, 2019, 6 (4): 303- 316. | |
5 | HWU S U, UPANAVAGE M, SHAM C C. NASA lunar base wireless system propagation analysis[C]//Proc. of the Symposium for Space Applications of Wireless, 2007. |
6 | HWU S, UPANAVAGE M, SHAM C. Lunar surface propagation modeling and effects on communications[C]//Proc. of the 26th International Communications Satellite Systems Conference, 2008: 10-12. |
7 | HUANG P, ZHU Q M, XUE C W, et al. Path loss prediction over lunar surface with obstacle diffraction[C]//Proc. of the IEEE Workshop on Advanced Research and Technology in Industry Applications, 2014: 1276-1279. |
8 | 曹素芝, 李昌浩, 王厚鹏, 等. 月面灵巧探测网络系统设计探讨[J]. 载人航天, 2021, 27 (1): 86- 92. |
CAO S Z , LI C H , WANG H P , et al. Discussion on design of lunar dexterity detection network system[J]. Manned Spaceflight, 2021, 27 (1): 86- 92. | |
9 | LIU S R, SHEN Z, MENG W. Cluster-based wireless sensor network deployment for lunar exploration[C]//Proc. of the International Conference on Communication Software and Networks, 2020: 138-143. |
10 | PAET L B, SANTRA S, LAINE M, et al. Maintaining connecti-vity in multi-rover networks for lunar exploration missions[C]//Proc. of the IEEE 17th International Conference on Automation Science and Engineering, 2021: 1539-1546. |
11 | SPEARMAN W, MARTIN J, GAO J L. Adaptive QoS in 802.11e wireless networks for lunar communications[C]//Proc. of the IEEE Aerospace Conference, 2008. |
12 | 裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65 (24): 2577- 2586. |
PEI Z Y , LIU J Z , WANG Q , et al. Overview of lunar exploration and International Lunar Research Station[J]. Chinese Science Bulletin, 2020, 65 (24): 2577- 2586. | |
13 |
LIN B , HOU P H , XIE L L , et al. Optimal relay station placement in broadband wireless access networks[J]. IEEE Trans. on Mobile Computing, 2010, 9 (2): 259- 269.
doi: 10.1109/TMC.2009.114 |
14 |
GUO W S , O'FARRELLT , et al. Relay deployment in cellular networks: planning and optimization[J]. IEEE Journal on Selected Areas in Communications, 2013, 31 (8): 1597- 1606.
doi: 10.1109/JSAC.2013.130821 |
15 |
ZHANG X F , LIU Y J , WANG Y , et al. Performance analysis and optimization for non-uniformly deployed mmWave cellular network[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019, 49.
doi: 10.1186/s13638-019-1370-z |
16 | BHASIN K, WARNER J, ANDERSON L. Lunar communication terminals for NASA exploration missions: needs, operations concepts and architectures[C]//Proc. of the International Communications Satellite Systems Conference, 2008. |
17 | TRASE K, COULTER R, CHANEY R, et al. Science hybrid orbiter and lunar relay (SCHOLR) architecture and design[C]//Proc. of the AIAA SPACE Conference & Exposition, 2010. |
18 | MARKS G W, REILLY M T, HUFF R L. The lightweight deployable antenna for the MARSIS experiment on the Mars express spacecraft[C]//Proc. of the 36th Aerospace Mechanisms Symposium, 2002: 14-17. |
19 | Recommendation ITU-R P. 526-15 Propagation by diffraction[S]. Geneva: International Telecommunication Union, 2019. |
20 |
PABARI J P , ACHARYA Y B , DESAI U B , et al. Radio frequency modeling for future wireless sensor network on surface of the moon[J]. International Journal on Communication, Network and System Sciences, 2010, 3 (4): 395- 401.
doi: 10.4236/ijcns.2010.34050 |
21 | SANTRA S, PAET L B, STAUDINGER E, et al. Radio propagation modelling for coordination of lunar micro-rovers[C]//Proc. of the International Symposium on Artificial Intelligence, Robo-tics and Automation in Space, Virtual, 2020. |
22 | LU F, YAMAGUCHI A, TAKEUCHI K, et al. Experimental investigation of the reflection characteristics of a flat lunar surface[C]//Proc. of the IEEE International Conference on Wireless for Space and Extreme Environments, 2022: 23-28. |
23 | LORDOS G, AMY C, BROWDER B, et al. Autonomously deployable tower infrastructure for exploration and communication in lunar permanently shadowed regions[C]//Proc. of the Accelerate Space Commerce, Exploration and New Discovery, 2020. |
24 |
BLETSAS A , SHIN H , WIN M Z . Cooperative communications with outage-optimal opportunistic relaying[J]. IEEE Trans. on Wireless Communications, 2007, 6 (9): 3450- 3460.
doi: 10.1109/TWC.2007.06020050 |
25 |
孙鹏, 武君胜, 廖梦琛, 等. 基于自适应遗传算法的战场资源动态调度模型及算法[J]. 系统工程与电子技术, 2018, 40 (11): 2459- 2465.
doi: 10.3969/j.issn.1001-506X.2018.11.11 |
SUN P , WU J S , LIAO M C , et al. Battlefield resource dynamic scheduling model and algorithm based on improved self-adaptive genetic algorithm[J]. Systems Engineering and Electronics, 2018, 40 (11): 2459- 2465.
doi: 10.3969/j.issn.1001-506X.2018.11.11 |
|
26 |
SAHEB H H , HAMZA J B , AL-BAGHDADI F A . New approach based on direction and genetic algorithm to predict target base station in mobile WiMAX[J]. Materials Today: Proceedings, 2022, 60, 1213- 1218.
doi: 10.1016/j.matpr.2021.08.071 |
27 | MEETEI K T . A survey: swarm intelligence vs. genetic algorithm[J]. International Journal of Science and Research, 2014, 3, 231- 235. |
28 | LAINE M, YOSHIDA K. Multi-rover exploration strategies: coverage path planning with myopic sensing[C]//Proc. of the 12th International Conference on Field and Service Robotics, 2021: 205-218. |
29 | CCSDS. 211.0-B-4. Proximity-1 space link protocol-coding and synchronization sublayer[S]. Washington D. C. : Consultative Committee for Space Data Sgstems, 2006. |
30 | GHOSH A , RATASUK R . Essentials of LTE and LTE-A[M]. Cambrideg: Cambridge University Press, 2011. |
31 |
MAGRIN D , AVALLONE S , ROY S , et al. Performance evaluation of 802.11 ax OFDMA through theoretical analysis and simulations[J]. IEEE Trans. on Wireless Communications, 2023, 22 (8): 5070- 5083.
doi: 10.1109/TWC.2022.3231447 |
32 | IEEE Std 802.11aj-2018 part 11. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 3: enhancements for very high throughput to support Chinese millimeter wave frequency bands (60 GHz and 45 GHz)[S]. New York: IEEE, 2018. |
[1] | Yuting ZHANG, Jingyu YANG. Capability-based defense resource allocation method [J]. Systems Engineering and Electronics, 2024, 46(2): 599-604. |
[2] | Zhiqiang CAO, Jia ZHANG, Bin XIN. UAV search coverage planning under intermittent information transmission condition [J]. Systems Engineering and Electronics, 2024, 46(1): 152-161. |
[3] | Yong DENG, Feng YAO, Lining XING, Lei HE. Inter-satellite data transmission method in satellite network based on hybrid evolutionary algorithm [J]. Systems Engineering and Electronics, 2023, 45(9): 2931-2940. |
[4] | Weining MA, Qiwei HU, Wenbin CAO, Xisheng JIA. Equipment selective maintenance decision optimization considering maintenance task assignment [J]. Systems Engineering and Electronics, 2023, 45(6): 1902-1910. |
[5] | Kexin BI, Minggong WU, Xiangxi WEN, Wenbin ZHANG, Wenda YANG. Conflict resolution strategy based on flight conflict network and genetic algorithm [J]. Systems Engineering and Electronics, 2023, 45(5): 1429-1440. |
[6] | Xiaofeng LYU, Dongze YANG, Ling MA. Optimal design of modular ammunition scheduling scheme for carrier-based aircraft [J]. Systems Engineering and Electronics, 2023, 45(2): 465-471. |
[7] | Zhe YAN, Minle WANG, Jiangpeng WANG, Shaoqiang YAN, Fengxuan WU. Intelligent optimization of vehicle scheduling for material distribution in naval aviation station based on hybrid genetic algorithm [J]. Systems Engineering and Electronics, 2023, 45(12): 3908-3914. |
[8] | Qidi WEN, Zhiyu KANG, Guoning WEI, Yanbo HE, Bin WU, Ruiyi ZHOU. Research on the approach observation mission flow planning method of parent-child spacecraft [J]. Systems Engineering and Electronics, 2023, 45(12): 3941-3948. |
[9] | Jie HU, Fan BAO, Xiaozhu SHI. Airport gate assignment strategy based on greedy-genetic algorithm [J]. Systems Engineering and Electronics, 2023, 45(11): 3555-3564. |
[10] | Lu ZHUANG, Zhong LU, Haijing SONG, Jia ZHOU. An optimization method for development assurance level assignment of airborne system [J]. Systems Engineering and Electronics, 2022, 44(8): 2688-2698. |
[11] | Tiansu LUO, Lingfeng ZHAO, Yunwen FENG, Xiaofeng XUE, Cheng LU. Super large-scale satellite constellation multi-level backup strategy based on METRIC theory [J]. Systems Engineering and Electronics, 2022, 44(7): 2181-2190. |
[12] | Bo LI, Jiahao ZHOU, Minmin LIU, Pinchao ZHU. Feature selection for welding defect assessment based on improved NSGA3 [J]. Systems Engineering and Electronics, 2022, 44(7): 2211-2218. |
[13] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. |
[14] | Shaolong YANG, Jin HUANG, Xianbo XIANG, Weichao LI. Optimization of USV area coverage path planning based on confidence ellipsoid [J]. Systems Engineering and Electronics, 2022, 44(7): 2263-2269. |
[15] | Yunwen FENG, Junyu CHEN, Cheng LU. Research on civil aircraft spare parts multi-region support network model [J]. Systems Engineering and Electronics, 2022, 44(5): 1553-1561. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||