Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (2): 597-605.doi: 10.12305/j.issn.1001-506X.2023.02.33
• Reliability • Previous Articles
Qiang LI1, Sifeng LIU1,2,*
Received:
2022-02-24
Online:
2023-01-13
Published:
2023-02-04
Contact:
Sifeng LIU
CLC Number:
Qiang LI, Sifeng LIU. Grey multi-index distortion prediction model of equipment component life extension[J]. Systems Engineering and Electronics, 2023, 45(2): 597-605.
Table 1
Prediction of distortion date of lower limit of product yield rate and analysis of residual error and relative error"
序号 | 实际数据 | 模拟数据 | 残差 | 相对模拟误差/% |
1 | 3 | 3.000 | 0.000 | 0.000 |
2 | 7 | 7.835 | -0.835 | 11.925 |
3 | 11 | 10.552 | 0.448 | 4.069 |
4 | 15 | 14.213 | 0.787 | 5.248 |
5 | 19 | 19.143 | -0.143 | 0.751 |
6 | 26 | 25.783 | 0.217 | 0.836 |
Table 2
RW rate upper limit distortion date prediction and analysis of residual erro and relative error"
序号 | 实际数据 | 模拟数据 | 残差 | 相对模拟误差/% |
1 | 2 | 2.000 | 0.000 | 0.000 |
2 | 6 | 7.123 | -1.123 | 18.723 |
3 | 10 | 9.504 | 0.496 | 4.965 |
4 | 13 | 12.679 | 0.321 | 2.469 |
5 | 17 | 16.915 | 0.085 | 0.497 |
6 | 23 | 22.567 | 0.433 | 1.880 |
7 | 30 | 30.108 | -0.108 | 0.360 |
Table 3
Prediction at the end of remaining life of IGZO target material and analysis of residual error and relative error"
序号 | 实际数据 | 模拟数据 | 残差 | 相对模拟误差/% |
1 | 10 112 | 10 112 | 0 | 0.000 |
2 | 10 235 | 10 214 | 21 | 0.209 |
3 | 10 306 | 10392 | -86 | 0.834 |
4 | 10 510 | 10573 | -63 | 0.604 |
5 | 10 684 | 10785 | -74 | 0.693 |
6 | 10 870 | 10946 | -76 | 0.699 |
7 | 10 951 | 11137 | -187 | 1.709 |
8 | 11 420 | 11332 | 88 | 0.774 |
9 | 11 653 | 11529 | 106 | 0.907 |
10 | 12 060 | 11731 | 329 | 2.730 |
11 | 12 150 | 11936 | 214 | 1.764 |
12 | 12 272 | 12144 | 126 | 1.026 |
13 | 12 390 | 12356 | 34 | 0.273 |
14 | 12 431 | 12 572 | 142 | 1.142 |
15 | 12 500 | 12 791 | -291 | 2.332 |
Table 4
RW rate upper limit distortion prediction data and residual and relative error analysis"
序号 | 实际数据 | 模拟数据 | 残差 | 相对模拟误差/% |
1 | 2.190 | 2.190 | 0.000 | 0.000 |
2 | 2.250 | 2.245 | 0.005 | 0.236 |
3 | 2.110 | 2.265 | -0.155 | 7.356 |
4 | 2.490 | 2.286 | 0.204 | 8.195 |
5 | 2.350 | 2.307 | 0.043 | 1.836 |
6 | 2.220 | 2.328 | -0.108 | 4.863 |
7 | 2.360 | 2.349 | 0.011 | 0.455 |
Table 5
Product yield rate lower limit distortion prediction data, residual error and relative error analysis"
序号 | 实际数据 | 模拟数据 | 残差 | 相对模拟误差/% |
1 | 89.640 | 89.640 | 0.000 | 0.000 |
2 | 88.810 | 88.315 | 0.495 | 0.558 |
3 | 87.080 | 88.107 | -1.027 | 1.179 |
4 | 88.140 | 87.899 | 0.241 | 0.273 |
5 | 88.310 | 87.693 | 0.617 | 0.699 |
6 | 87.160 | 87.486 | -0.326 | 0.374 |
1 | GEBRAEEL N , LAWLEY M , LI R , et al. Residual-life distributions from component degradation signals: a Bayesian approach[J]. ⅡE Transactions, 2005, 37 (2): 543- 557. |
2 |
GEBRAEEL N . Sensory-updated residual life distributions for components with exponential degradation patterns[J]. IEEE Trans.on Auto-mation Science and Engineering, 2006, 3 (4): 382- 393.
doi: 10.1109/TASE.2006.876609 |
3 | 米良, 程珩, 权龙. 基于泊松随机过程的风力发电机叶片疲劳寿命估算[J]. 机械工程学报, 2016, 52 (18): 134- 139. |
MI L , CHENG H , QUAN L . Estimation of blade fatigue life of wind turbine based on Poisson Stochastic process[J]. Journal of Mechanical Engineering, 2016, 52 (18): 134- 139. | |
4 | 王浩伟, 徐廷学, 刘勇. 基于随机参数Gamma过程的剩余寿命预测方法[J]. 浙江大学学报(工学版), 2015, 49 (4): 700- 705. |
WANG H W , XU T X , LIU Y . Remaining useful life prediction method based on Gamma processes with random parameters[J]. Journal of Zhejiang University (Engineering Science), 2015, 49 (4): 700- 705. | |
5 |
SI X S , WANG W B , MAO Y C , et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2013, 226 (1): 53- 66.
doi: 10.1016/j.ejor.2012.10.030 |
6 | WANG X L , BALAKRISHNAN N , GUO B . Residual life estimation based on a generalized wiener degradation process[J]. Reliability Engineering System Safety, 2014, 12 (4): 13- 23. |
7 |
TANG S J , YU C Q , WANG X , et al. Remaining useful life prediction of lithiumionbatteries based on the wiener process with measurement error[J]. Energies, 2014, 7 (2): 520- 547.
doi: 10.3390/en7020520 |
8 | 彭才华, 钱富才, 杜许龙. 新型非线性退化建模与剩余寿命预测[J]. 计算机集成制造系统, 2019, 25 (7): 1647- 1654. |
PENG C H , QIAN F C , DU X L . New nonlinear degradation modeling and residual life prediction[J]. Computer Integrated Manufacturing Systems, 2019, 25 (7): 1647- 1654. | |
9 |
KHAROUFEH J P , MIXON D G . On a Markov modulated shock and wear process[J]. Naval Research Logistics, 2009, 56 (6): 563- 576.
doi: 10.1002/nav.20366 |
10 |
KHAROUFEH J P , COX S M . Stochastic models for degradation-based reliability[J]. ⅡE Transaction, 2005, 37 (6): 533- 542.
doi: 10.1080/07408170590929009 |
11 | GIORGIO M , GUIDA M , PULCINI G . An age and state-dependent Markov model for degradation processes[J]. ⅡETransactions, 2011, 43 (9): 621- 632. |
12 | VLOK P J , WNEK M , ZYGMUNT M . Utilizing statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions[J]. Mechanical Systems and Signal Proce-ssing, 2004, 18 (1): 833- 847. |
13 |
SUN Y , MA L , MATHEW J . Mechanical systems hazard estimation using condition monitoring[J]. Mechanical Systems and Signal Processing, 2006, 20 (5): 1189- 1201.
doi: 10.1016/j.ymssp.2004.10.009 |
14 | 奚立峰, 黄润青, 李兴林, 等. 基于神经网络的球轴承剩余寿命预测[J]. 机械工程学报, 2007, 43 (10): 138- 143. |
XI L F , HUANG R Q , LI X L , et al. Residual life predictions for ball bearing based on neural networks[J]. Journal of Mechanical Engineering, 2007, 43 (10): 138- 143. | |
15 |
LI X , DING Q , SUN J Q . Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety, 2018, 172, 1- 11.
doi: 10.1016/j.ress.2017.11.021 |
16 | 宋亚, 夏唐斌, 郑宇, 等. 基于Autoencoder-BLSTM的祸扇发动机剩余寿命预测[J]. 计算机集成制造系统, 2019, 25 (7): 1611- 1619. |
SONG Y , XIA T B , ZHENG Y , et al. Remaining useful life prediction of turbofan engine based on Autoencoder-BLSTM[J]. Computer Integrated Manuf-acturing Systems, 2019, 25 (7): 1611- 1619. | |
17 | ZHANG C , LI M P , QIN A K , et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Trans.on Neural Networks and Learning Systems, 2017, 28 (10): 2306- 2318. |
18 | 刘惠, 刘振宇, 郏维强, 等. 基于深度学习的剩余使用寿命预测技术研究现状与挑战[J]. 计算机集成制造系统, 2020, 12 (8): 2079- 2088. |
LIU H , LIU Z Y , JIA W Q . Current research and challenges of deep learning-based remaining useful life prediction[J]. Computer Integrated Manufacturing Systems, 2020, 12 (8): 2079- 2088. | |
19 | SON J B , ZHANG Y L , SANKAVARAM C , et al. RUL Prediction for individual units based on condition monitoring signals with a change point[J]. IEEE Trans.on Reliability, 2014, 64 (1): 182- 196. |
20 | CHENG Y J , LU C , LI T Y , et al. Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and bayesian approach[J]. Energy, 2015, 90 (Part 2): 1983- 1993. |
21 | DENG J L . Control problems of grey systems[J]. Systems & Control Letters, 1982, 1 (5): 288- 294. |
22 | 邓聚龙. 灰色控制系统[M]. 武汉: 华中工学院出版社, 1985. |
DENG J L . Grey control system[M]. Wuhan: Press of Huazhong University of Sciencs and Technology, 1985. | |
23 | LIU S F , YANG Y J , JEFFREY F . Grey data analysis[M]. Singapore: Springer-Verlag, 2017. |
24 | 刘思峰. 灰色系统理论及其应用[M]. 9版 北京: 科学出版社, 2021. |
LIU S F . Grey systems and its applications[M]. 9th ed Beijing: Science Press, 2021. | |
25 | 刘思峰, 杨英杰. 灰色系统研究进展(2004-2014)[J]. 南京航空航天大学学报, 2015, 47 (1): 1- 18. |
LIU S F , YANG Y J . Advances in gray system research (2004-2014)[J]. Journal of Nanjing University of Aeronautics & Astronautic, 2015, 47 (1): 1- 18. | |
26 | CZESLAW C . Decomposition of symptom observation matrix and grey forecasting in vibration condition monitoringof machines[J]. International Journal of Applied Mathematics and Computer Science, 2008, 18 (4): 568- 578. |
27 | 刘思峰, 曾波, 刘解放, 等. GM(1, 1)模型的几种形式及其适用范围研究[J]. 系统工程与电子技术, 2014, 36 (3): 501- 508. |
LIU S F , ZENG B , LIU J F , et al. Several basic models of GM(1, 1) and their applicable bond[J]. Systems Engineering and Electronics, 2014, 36 (3): 501- 508. | |
28 | 王旭亮, 聂宏. 基于灰色系统GM(1.1)模型的疲劳寿命预测方法[J]. 南京航空航天大学学报, 2008,, 40 (6): 845- 848. |
WANG X L , NIE H . On a method offatigue life prediction based on gray system model GM(1, 1)[J]. Journal of Nanjing University of Aeronautics & Astronautic, 2008, 40 (6): 845- 848. | |
29 | SHEU D D , KUO J Y . A model for preventive maintenance operations and forecasting[J]. Journal of Intelligent Manufacturing, 2006, 17 (4): 441- 451. |
30 | 黄魁, 苏春. 基于灰色神经网络组合模型的故障预测[J]. 系统工程与电子技术, 2020, 42 (1): 238- 244. |
HUANG K , SU C . Gray neural network model based on fault prediction[J]. Systems Engineering and Electronics, 2020, 42 (1): 238- 244. |
[1] | Hongbin LIU, Qian ZHAO, Xiang JIA, Bo GUO. Residual life prediction of r-out-of-n: G systems with known failure information [J]. Systems Engineering and Electronics, 2022, 44(5): 1738-1746. |
[2] | Zhiyuan YANG, Jianmin ZHAO, Liying LI, Zhonghua CHENG, Chiming GUO. Reliability analysis and residual life estimation of bivariate dependent degradation system [J]. Systems Engineering and Electronics, 2020, 42(11): 2661-2668. |
[3] | ZHAO Qian, JIA Xiang, CHENG Zhijun, GUO Bo. Estimation of lifetime and residual life of typical system with Weibull distributed components [J]. Systems Engineering and Electronics, 2019, 41(7): 1665-1671. |
[4] | HUANG Liang, LIU Junqiang, GONG Yingjie. Residual lifetime prediction of aeroengines based on the consistency test [J]. Systems Engineering and Electronics, 2018, 40(12): 2736-2742. |
[5] | HUANG Xiu-ping, TANG Yan-zhen, SUN Quan, ZHOU Jing-lun. Optimal burn-in time for competing failure products involving catastrophic and degradation failures [J]. Journal of Systems Engineering and Electronics, 2013, 35(8): 1803-1808. |
[6] | PENG Bao-hua,ZHOU Jing-lun,SUN Quan,FENG Jing,JIN Guang. Residual lifetime prediction of products based on fusion of degradation data and lifetime data [J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1073-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||