Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (12): 3631-3640.doi: 10.12305/j.issn.1001-506X.2022.12.06
• Electronic Technology • Previous Articles Next Articles
Chaofan PAN, Runsheng LI*, Yan XU, Qing HU, Chaoyang NIU, Wei LIU
Received:
2021-07-20
Online:
2022-11-14
Published:
2022-11-24
Contact:
Runsheng LI
CLC Number:
Chaofan PAN, Runsheng LI, Yan XU, Qing HU, Chaoyang NIU, Wei LIU. Ship detection of optical remote sensing images based on aware vectors[J]. Systems Engineering and Electronics, 2022, 44(12): 3631-3640.
Table 1
Comparison between improved method and baseline network performance"
方法 | mAP(07) | mAP(12) | 推理速度/fps |
CP[ | 55.70 | - | - |
BL2[ | 69.60 | - | - |
R2CNN[ | 73.07 | 79.73 | 5.00 |
IENet[ | 75.01 | - | - |
RC1[ | 75.70 | - | - |
RC2[ | 75.70 | - | - |
RRPN[ | 79.08 | 85.64 | 1.50 |
R2PN[ | 79.60 | - | - |
RRD[ | 84.30 | - | - |
RoI Trans.[ | 86.20 | - | 5.90 |
DRN[ | - | 92.70 | - |
基线网络 | 88.83 | 90.75 | 13.40 |
本文方法 | 90.06 | 94.50 | 12.68 |
Table 5
Effect of coordination coefficient (λ1=3, λ0=1)"
weight1 | weight2 | 航母 | 战舰 | 商船 | 潜艇 | mAP(12) |
1 | 0.3 | 89.99 | 93.43 | 69.15 | 75.28 | 81.96 |
1 | 0.5 | 93.83 | 93.74 | 71.53 | 79.28 | 84.59 |
1 | 0.8 | 91.19 | 94.81 | 70.49 | 79.02 | 83.88 |
1 | 1 | 97.65 | 94.10 | 68.84 | 77.62 | 84.55 |
1 | 2 | 95.64 | 94.82 | 71.17 | 71.00 | 83.15 |
1 | 3 | 87.17 | 93.29 | 67.89 | 75.54 | 80.97 |
1 | 4 | 93.27 | 94.56 | 66.78 | 69.27 | 80.97 |
2 | 1 | 88.07 | 92.99 | 66.52 | 70.02 | 79.40 |
3 | 1 | 93.62 | 93.16 | 68.07 | 65.09 | 79.99 |
4 | 1 | 93.27 | 94.25 | 70.25 | 65.61 | 80.84 |
1 |
KRIZHEVSKYA , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386 |
2 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |
3 | GIRSHICKR. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448. |
4 | RENS Q , HE K M , GIRSHICK R , et al. FasterR-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149. |
5 |
LAW H , DENG J . CornerNet: detecting objectsas paired keypoints[J]. International Journal of Computer Vision, 2020, 128 (3): 642- 656.
doi: 10.1007/s11263-019-01204-1 |
6 | DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 6569-6578. |
7 | ZHOU X Y, ZHUO J C, KRHENBVHL P. Bottom-up object detection by grouping extremeand center points[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 850-859. |
8 | 陈冬, 句彦伟. 基于改进型YOLOv3的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2021, 43 (4): 937- 943. |
CHEN D , JU Y W . Ship detection in SAR imagebased on improved YOLOv3[J]. Systems Engineering and Electronics, 2021, 43 (4): 937- 943. | |
9 | LIU Z K, HU J G, WENG L B, et al. Rotated region based CNN for ship detection[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 900-904. |
10 | JIANG Y Y, ZHU X Y, WANG X B, et al. R2CNN: rotational region CNN for orientation robust scene text detection[EB/OL]. [2021-07-10]. https://arxiv.org/abs/1706.09579v2. |
11 |
MA J Q , SHAO W Y , YE H , et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Trans.on Multimedia, 2018, 20 (11): 3111- 3122.
doi: 10.1109/TMM.2018.2818020 |
12 | DING J, XUE N, LONG Y, et al. Learning RoI transformer for detecting oriented objects in aerial images[EB/OL]. [2021-07-10]. https://arxiv.org/abs/1812.00155. |
13 | LIAO M H, ZHU Z, SHI B G, et al. Rotation-sensitive regression for oriented scene text detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5909-5918. |
14 |
WEI H Y , ZHANG Y , CHANG Z H , et al. Orientedobjects as pairs of middle lines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 268- 279.
doi: 10.1016/j.isprsjprs.2020.09.022 |
15 |
ZHOU L , WEI H R , LI H , et al. Objects detection for remotesensing images based on polar coordinates[J]. IEEE Access, 2020, 8, 223373- 223384.
doi: 10.1109/ACCESS.2020.3041025 |
16 | ZHU Z C , DIAO W H , CHEN K Q , et al. Diamondnet: ship detection in remote sensing images by extractingand clustering keypoints in a diamond[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2020, 5 (2): 625- 632. |
17 | ZHANG F, WANG X Y, ZHOU S L, et al. Arbitrary-oriented ship detection through center-headpoint extraction[EB/OL]. [2021-07-10]. https://arxiv.org/abs/2101.11189v2. |
18 | YI J R, WU P X, LIU B, et al. Oriented object detectionin aerial images with boxboundary-aware vectors[C]//Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 2150-2159. |
19 | YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, clutteredand rotated objects[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 8232-8241. |
20 | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
21 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018. |
22 | LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//Proc. of the International Conference on Pattern Recognition Applications and Methods, 2017: 324-331. |
23 | 仲伟峰, 郭峰, 向世明, 等. 旋转矩形区域的遥感图像舰船目标检测模型[J]. 计算机辅助设计与图形学学报, 2019, 31 (11): 1935- 1945. |
ZHONG W F , GUO F , XIANG S M , et al. Ship detectionin remote sensing based with rotated rectangular region[J]. Journal of Computer-Aided Design & ComputerGraphics, 2019, 31 (11): 1935- 1945. | |
24 | LIU Z K, HU J G, WENG L B, et al. Rotatedregion based CNN for ship detection[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 900-904. |
25 | LIN Y T, FENG P M, GUAN J, et al. IENet: interacting embranchment one stage anchor free detector for orientation aerial object detection[EB/OL]. [2021-07-10]. https://arxiv.org/abs/1912.00969. |
26 |
ZHANG Z H , GUO W W , ZHU S N , et al. Toward arbitrary-oriented ship detection withrotated region proposal and discri-minationnetworks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (11): 1745- 1749.
doi: 10.1109/LGRS.2018.2856921 |
27 | LIAO M H, ZHU Z, SHI B G, et al. Rotation-sensitive regression for oriented scene text detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5909-5918. |
28 | DING J, XUE N, LONG Y, et al. Learning ROI transformer for oriented object detection in aerial images[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2849-2858. |
29 | PAN X J, REN Y Q, SHENG K K, et al. Dynamic refinement network for oriented and denselypacked object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11207-11216. |
[1] | Jun MA, Jingyu YANG, Xi WU. Evaluation of operational system of systems effectiveness based on pre-clustering active semi-supervised learning [J]. Systems Engineering and Electronics, 2022, 44(6): 1889-1896. |
[2] | Pengyu CAO, Chengzhi YANG, Limeng SHI, Hongchao WU. Unknown radar signal processing based on PSO-DBSCAN and SCGAN [J]. Systems Engineering and Electronics, 2022, 44(4): 1158-1165. |
[3] | Xu LI, Meng DING, Donghui WEI, Xiaozhou WU, Yunfeng CAO. Depth estimation method based on monocular infrared image in VDAS [J]. Systems Engineering and Electronics, 2021, 43(5): 1210-1217. |
[4] | Wei SHI, Honglan HUANG, Yanghe FENG, Zhong LIU. Subsampling oriented active learning method for multi-category classification problem [J]. Systems Engineering and Electronics, 2021, 43(3): 700-708. |
[5] | Liu YANG, Weigang ZHU, Shouye LYU, Shuang MA. Waveform unit extraction method for non-cooperative multi-function radar [J]. Systems Engineering and Electronics, 2021, 43(10): 2843-2850. |
[6] | Lei YANG, Xinyao MAO, Xiaowei YANG, Hai ZHANG, Fei YANG, Lin SUN. Dynamic evaluation of radar performance index based on unsupervised Bayesian learning [J]. Systems Engineering and Electronics, 2021, 43(1): 74-82. |
[7] | Chongyu PAN, Jian HUANG, Jianguo HAO, Jianxing GONG, Zhongjie ZHANG. Survey of weakly supervised learning integrating zero-shot and few-shot learning [J]. Systems Engineering and Electronics, 2020, 42(10): 2246-2256. |
[8] | Zhangwen FANG, Jinyi ZHANG, Ke LI, Yuxi JIANG. Semi-supervised feature extraction of communication emitter under small sample condition [J]. Systems Engineering and Electronics, 2020, 42(10): 2381-2389. |
[9] | SUI Ping, GUO Ying, ZHANG Kunfeng, LI Honguang. Semi-supervised frequency-hopping transmitter fingerprint feature recognition based on CRC [J]. Systems Engineering and Electronics, 2019, 41(1): 187-193. |
[10] | WU Zhenyu, HOU Bingyang, WANG Huibing, LIU Shenglan, FENG Lin. Semi-supervised sparsity neighboring preserving projection [J]. Systems Engineering and Electronics, 2018, 40(4): 934-940. |
[11] | ZHANG Yue, ZOU Huanxin, SHAO Ningyuan, QIN Xianxiang, ZHOU Shilin, JI Kefeng. Terrain classification of polarimetric SAR images based on consensus similarity network fusion [J]. Systems Engineering and Electronics, 2018, 40(2): 295-302. |
[12] | FU Ying, WANG Xing, ZHOU Yipeng, FAN Xiangyu. Recognition of LPI radar signals based on revised semi-supervised Naive Bayes [J]. Systems Engineering and Electronics, 2017, 39(11): 2463-2469. |
[13] | MAO Dun, XING Chang-feng, LI Tie-bing, HUANG Ao-ling. Graph based semi-supervised learning for object tracking [J]. Systems Engineering and Electronics, 2016, 38(2): 450-456. |
[14] | HE Wei, XING Meng-dao. Classification method for POLSAR images based on find of density peak [J]. Systems Engineering and Electronics, 2016, 38(1): 60-63. |
[15] | KM-SVM approach to unsupervised change detection in SAR images. KM-SVM approach to unsupervised change detection in SAR images [J]. Systems Engineering and Electronics, 2015, 37(5): 1042-1046. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||