Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (10): 3026-3032.doi: 10.12305/j.issn.1001-506X.2021.10.39
• Relability • Previous Articles
Jiahui SHI, Jihui XU*, Yujin CHEN, Xiaolin WANG
Received:
2020-11-17
Online:
2021-10-01
Published:
2021-11-04
Contact:
Jihui XU
CLC Number:
Jiahui SHI, Jihui XU, Yujin CHEN, Xiaolin WANG. Research on risk assessment method of aircraft heavy landing based on interaction matrix-multidimensional cloud model[J]. Systems Engineering and Electronics, 2021, 43(10): 3026-3032.
Table 2
Heavy landing operation risk reference standard"
等级 | 接地速度偏差/(m·s-1) | 接地仰角偏差/(°) | 接地垂直加速度/g | 接地距离偏差/m |
Ⅰ | 0~0.147 | 0~0.151 | 0~0.145 | 0~0.153 |
Ⅱ | 0.147~0.442 | 0.151~0.468 | 0.145~0.435 | 0.153~0.458 |
Ⅲ | 0.442~0.737 | 0.468~0.754 | 0.435~0.725 | 0.458~0.764 |
Ⅳ | 0.737~0.884 | 0.754~0.905 | 0.725~0.870 | 0.764~0.917 |
Ⅴ | 0.884~1 | 0.905~1 | 0.870~1 | 0.917~1 |
Table 3
Heavy landing operation risk factors digital characteristics of multimensional cloud model"
等级 | 数字特征 | 接地速度偏差/(m·s-1) | 接地仰角偏差/(°) | 接地垂直加速度/g | 接地距离偏差/m |
Ⅰ | Ex | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 |
En | 0.049 0 | 0.005 1 | 0.048 3 | 0.051 0 | |
He | 0.020 0 | 0.020 0 | 0.020 0 | 0.020 0 | |
Ⅱ | Ex | 0.294 5 | 0.309 5 | 0.290 0 | 0.305 5 |
En | 0.098 3 | 0.105 7 | 0.096 7 | 0.101 7 | |
He | 0.020 0 | 0.020 0 | 0.020 0 | 0.020 0 | |
Ⅲ | Ex | 0.589 5 | 0.611 0 | 0.580 0 | 0.611 0 |
En | 0.098 3 | 0.095 3 | 0.096 7 | 0.102 0 | |
He | 0.020 0 | 0.020 0 | 0.020 0 | 0.020 0 | |
Ⅳ | Ex | 0.810 5 | 0.829 5 | 0.797 5 | 0.840 5 |
En | 0.049 0 | 0.050 3 | 0.048 3 | 0.051 0 | |
He | 0.020 0 | 0.020 0 | 0.020 0 | 0.020 0 | |
Ⅴ | Ex | 1.000 0 | 1.000 0 | 1.000 0 | 1.000 0 |
En | 0.038 7 | 0.031 7 | 0.043 3 | 0.027 7 | |
He | 0.020 0 | 0.020 0 | 0.020 0 | 0.020 0 |
Table 4
Weight of heavy landing risk factors"
交互作用矩阵特征值 | 数字特征 | 接地速度偏差/(m·s-1) | 接地仰角偏差/(°) | 接地垂直加速度/g | 接地距离偏差/m |
C | Ex | 2.888 9 | 3.111 1 | 2.444 4 | 2.222 2 |
En | 0.574 8 | 0.546 2 | 0.537 8 | 0.561 1 | |
He | 0.174 0 | 0.156 8 | 0.156 8 | 0.156 8 | |
E | Ex | 2.222 2 | 2.777 8 | 3.333 3 | 2.333 3 |
En | 0.561 1 | 0.544 7 | 0.596 7 | 0.498 8 | |
He | 0.156 8 | 0.165 6 | 0.174 1 | 0.147 4 | |
C+E | Ex | 5.111 1 | 5.888 9 | 5.777 7 | 4.555 5 |
En | 0.803 2 | 0.771 3 | 0.803 3 | 0.750 7 | |
He | 0.234 2 | 0.228 1 | 0.234 3 | 0.215 2 | |
wi/% | 23.96 | 27.60 | 27.08 | 21.36 |
Table 5
Heavy landing risk assessment results and comparison"
着陆段 | 等级隶属度 | 实际情况 | 组合赋权云[ | 证据-云[ | 本文方法 | ||||
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | |||||
A1 | 0.133 2 | 0.425 1 | 0.774 1 | 0.965 5 | 0.569 4 | Ⅳ | Ⅳ | Ⅳ | Ⅳ |
A2 | 0.436 5 | 0.885 9 | 0.948 7 | 0.884 1 | 0.300 2 | Ⅲ | Ⅳ | Ⅲ | Ⅲ |
A3 | 0.802 1 | 0.987 1 | 0.763 1 | 0.503 7 | 0.122 1 | Ⅱ | Ⅱ | Ⅱ | Ⅱ |
A4 | 0.923 8 | 0.912 5 | 0.600 3 | 0.359 9 | 0.076 5 | I | I | I | I~Ⅱ |
1 | MH/T2001-2018中国民用航空局. 新版民用航空器事故征候[S]. 北京: 中国民用航空局, 2018. |
MH/T2001-2018 Civil Aviation Administration of China. New version of civil aircraft accident symptoms[S]. Beijing: Civil Aviation Administration of China, 2018. | |
2 |
WU S H , LIU X D , LI Z X , et al. A consistency improving method in the analytic hierarchy process based on directed circuit analysis[J]. Journal of Systems Engineering and Electronics, 2019, 30 (6): 1160- 1181.
doi: 10.21629/JSEE.2019.06.11 |
3 |
REZA F , MOHAMMAD K . Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment[J]. Safety Science, 2018, 102, 290- 300.
doi: 10.1016/j.ssci.2017.10.018 |
4 |
SIMON L , WEI Z . Risk analysis for the supplier selection problem using failure modes and effects analysis (FMEA)[J]. Journal of Intelligent Manufacturing, 2016, 27 (6): 1309- 1321.
doi: 10.1007/s10845-014-0953-0 |
5 |
LIU H C , HU Y P , WANG J J . Failure mode and effects analysis using two-dimensional uncertain linguistic variables and alternative queuing method[J]. IEEE Trans.on Reliability, 2019, 68 (2): 554- 565.
doi: 10.1109/TR.2018.2866029 |
6 |
LI H W , JAMES J H , LI OU . A novel multiple-criteria decision-making-based FMEA model for risk assessment[J]. Applied Soft Computing Journal, 2018, 73, 684- 696.
doi: 10.1016/j.asoc.2018.09.020 |
7 |
TIAN Z P , WANG J Q , ZHANG H Y . An integrated approach for failure mode and effects analysis based on fuzzy best-worst, relative entropy, and VIKOR methods[J]. Applied Soft Computing, 2018, 72, 636- 646.
doi: 10.1016/j.asoc.2018.03.037 |
8 |
DANESHVAR S , YAZDI M , ADESINA K A . Fuzzy smart failure modes and effects analysis to improve safety performance of system: case study of an aircraft landing system[J]. Quality and Reliability Engineering International, 2020, 36 (3): 890- 909.
doi: 10.1002/qre.2607 |
9 |
ZHOU L , LIU B S , ZHAO Y , et al. Application research of grey fuzzy evaluation method in enterprise product reputation evaluation[J]. Procedia CIRP, 2019, 83, 759- 766.
doi: 10.1016/j.procir.2019.05.014 |
10 |
TONG C , YIN X , LI J , et al. An innovative deep architecture for aircraft heavy landing prediction based on time-series sensor data[J]. Applied Soft Computing, 2018, 73, 344- 349.
doi: 10.1016/j.asoc.2018.07.061 |
11 |
SARTOR P , BECKER W , WORDEN K , et al. Bayesian sensitivity analysis of flight parameters in a hard-landing analysis process[J]. Journal of Aircraft, 2016, 53 (5): 1317- 1331.
doi: 10.2514/1.C032757 |
12 | ZHOU S H , ZHOU Y L , XU Z Z , et al. The landing safety prediction model by integrating pattern recognition and Markov chain with flight data[J]. Neural Computing & Applications, 2019, 31, 147- 159. |
13 |
DAI Y , TIAN J , RONG H , et al. Hybrid safety analysis method based on SVM and RST: An application to carrier landing of aircraft[J]. Safety Science, 2015, 80, 56- 65.
doi: 10.1016/j.ssci.2015.07.006 |
14 | 汪磊, 郭世广, 任勇. 基于飞行数据正态云的着陆操作风险评价方法[J]. 安全与环境学报, 2019, 19 (5): 1555- 1561. |
WANG L , GUO S G , REN Y . Landing operation risk evaluation based on the normal cloud of the flight data[J]. Journal of Safety and Environment, 2019, 19 (5): 1555- 1561. | |
15 | 魏博文, 黄海鹏, 徐镇凯. 基于云模型和组合赋权的岩体质量二维评价模型[J]. 岩石力学与工程学报, 2016, 35 (S1): 3092- 3099. |
WEI B W , HUANG H P , XU Z K . Two-dimensional evaluation model of rock mass based on combination weighting and cloud model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (S1): 3092- 3099. | |
16 | 沈延安, 张君彪. 基于云模型和证据理论的装备管理绩效评价[J]. 系统工程与电子技术, 2019, 41 (5): 1049- 1055. |
SHEN Y A , ZHANG J B . Equipment management perfor-mance assessment based on cloud model and evidence theory[J]. Systems Engineering and Electronics, 2019, 41 (5): 1049- 1055. | |
17 | 汪磊, 孙瑞山, 吴昌旭, 等. 基于飞行QAR数据的重着陆风险定量评价模型[J]. 中国安全科学学报, 2014, (2): 88- 92. |
WANG L , SUN R S , WU C X . A flight QAR data based model for heavy landing risk quantitative evaluation[J]. China Safety Science Journal, 2014, 24 (2): 88- 92. | |
18 | 朱荟群. 民机着陆阶段驾驶舱人机交互风险评估方法研究[D]. 南京: 南京航空航天大学, 2019. |
ZHU H Q. Research on risk assessment method of human-machine interaction in civil aircraft cockpit during landing phase[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. | |
19 | JIAO H , HUDSON J A . The fully-coupled model for rock engineering systems[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1995, 32 (5): 491- 512. |
20 | 任勇. 航线飞行员的风险倾向特征研究[D]. 天津: 中国民航大学, 2018. |
REN Y. Study on the characteristics of risk propensity of airline pilots[D]. Tianjin: Civil Aviation University of China, 2018. | |
21 | NAGHADEHI M Z , JIMENEZ R , KHALOKAKAIE R , et al. A new open-pit mine slope instability index defined using the improved rock engineering systems approach[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 61, 1- 14. |
22 |
WANG D , ZENG D B , SINGH V P , et al. A multidimension cloud model-based approach for water quality assessment[J]. Environmental Research, 2016, 149, 113- 121.
doi: 10.1016/j.envres.2016.05.012 |
23 | 过江, 张为星, 赵岩. 岩爆预测的多维云模型综合评判方法[J]. 岩石力学与工程学报, 2018, 37 (5): 1199- 1206. |
GUO J , ZHANG W X , ZHAO Y . A multidimensional cloud model for rock burst prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (5): 1199- 1206. | |
24 | JALALIFAR H , MOJEDIFAR S , SAHEBI A A , et al. Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system[J]. Computers & Geotechnics, 2011, 38 (6): 783- 790. |
25 | 王双川, 贾希胜, 胡起伟, 等. 基于正态灰云模型的装备维修保障系统效能评估[J]. 系统工程与电子技术, 2019, 41 (7): 1576- 1582. |
WANG S C , JIA X S , HU Q W , et al. Effectiveness evaluation for equipment maintenance support system based on normal grey cloud model[J]. Systems Engineering and Electronics, 2019, 41 (7): 1576- 1582. | |
26 |
SUN X Y , ZHANG J Y , HAN G . Application of a grey cloud model in the identification of defects in bolt anchorage[J]. INSIGHT, 2019, 61 (8): 465- 471.
doi: 10.1784/insi.2019.61.8.465 |
27 | XUE Y G , LI Z Q , LI S C . Water inrush risk assessment for an undersea tunnel crossing a fault: an analytical model[J]. Marine Georesources & Geotechnology, 2019, 37 (7): 816- 827. |
28 |
PENG H G , ZHANG H Y , WANG J Q . An uncertain Z-number multicriteria group decision-making method with cloud mo-dels[J]. Information Sciences, 2019, 501, 136- 154.
doi: 10.1016/j.ins.2019.05.090 |
29 | ARAUJO L N , BELOTTI J T , ALVES T A , et al. Ensemble method based on artificial neural networks to estimate air pollution health risks[J]. Environmental Modelling and Software, 2020, 123, 104- 567. |
30 | ADAMS M D , KANAROGLOU P S . Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models[J]. Journal of Environmental Management, 2016, 168, 133- 141. |
[1] | Xudong SHI, Boyuan CHENG, Kun HUANG, Zhangang YANG. Risk assessment of aircraft IDG based on fuzzy TOPSIS-FMEA [J]. Systems Engineering and Electronics, 2022, 44(6): 2060-2064. |
[2] | LI Xiaopeng, HUANG Hongzhong, LI Fuqiu. PRA based reliability analysis of complex space phased-mission system [J]. Systems Engineering and Electronics, 2019, 41(9): 2141-2147. |
[3] | WANG Wei, YU Jiaxiang, YANG Shaoqing, WANG Lei. #br# Operation resolution scheme risk assessment for informationizedwarship formation at sea [J]. Systems Engineering and Electronics, 2016, 38(3): 569-574. |
[4] | ZHAO Yuan, JIAO Jian, ZHAO Ting-di. Risk assessment method based on fuzzy logic [J]. Systems Engineering and Electronics, 2015, 37(8): 1825-1831. |
[5] | LIU Ying1,2, LI Minqiang1, CHEN Fuzan1. Risk quantitative evaluation model of the aircraft maneuver [J]. Systems Engineering and Electronics, 2014, 36(3): 469-475. |
[6] | LIU Anying, WEI Fajie, ZHAO Tingdi. Method for dynamic risk evaluation based on language information [J]. Systems Engineering and Electronics, 2014, 36(12): 2456-2460. |
[7] | XU Zhe, JIA Zi-jun. Assessment of performance risk for weapon system development based on simulation method [J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 793-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||