

系统工程与电子技术 ›› 2023, Vol. 46 ›› Issue (1): 300-308.doi: 10.12305/j.issn.1001-506X.2024.01.34
• 制导、导航与控制 • 上一篇
雷灏1,2, 赵品彰1, 汪东华1, 陈柏屹2,*
收稿日期:2022-10-18
出版日期:2023-12-28
发布日期:2024-01-11
通讯作者:
陈柏屹
作者简介:雷灏 (1990—), 女, 工程师, 博士, 主要研究方向为可解释性人工智能基金资助:Hao LEI1,2, Pinzhang ZHAO1, Donghua WANG1, Boyi CHEN2,*
Received:2022-10-18
Online:2023-12-28
Published:2024-01-11
Contact:
Boyi CHEN
摘要:
针对樽海鞘群算法(salp swarm algorithm, SSA)中参数含义不明确、收敛性不确定的问题, 构建了SSA的差分动力学模型, 定义了领导者选择机制、领导者游走机制、跟随者偏序学习机制, 重点针对跟随者偏序学习机制分析了系统的收敛性, 面向领导者游走机制与跟随者偏序学习机制提出了算法全局最优收敛的充分条件。基于动力学分析结果提出了樽海鞘群异质定常跟随率与偏序多驱动机制的改进方法, 仅对算法结构与参数进行了调整, 在未增加计算量的情况下提高了算法的性能, 通过仿真分析验证了改进的有效性。
中图分类号:
雷灏, 赵品彰, 汪东华, 陈柏屹. 樽海鞘群算法基于动力学模型的改进[J]. 系统工程与电子技术, 2023, 46(1): 300-308.
Hao LEI, Pinzhang ZHAO, Donghua WANG, Boyi CHEN. Improvements of slap swarm algorithm based on dynamic model[J]. Systems Engineering and Electronics, 2023, 46(1): 300-308.
表1
算法统计学特征平均排名比较"
| 统计学特征 | 算法 | |||||||
| SSA | HSSA | MSSA | MSNSSA | OOSSA | PSO | GWO | MHSSA | |
| Median | 5.37(6) | 4.77(5) | 2.77(2) | 7.33(8) | 4.17(4) | 5.97(7) | 3.83(3) | 1.80(1) |
| Variance | 4.40(4) | 4.23(3) | 4.93(7) | 4.43(5) | 3.93(2) | 5.37(8) | 4.80(6) | 3.90(1) |
| Minimum | 5.13(6) | 4.63(5) | 2.70(2) | 7.23(8) | 4.03(3) | 5.40(7) | 4.33(4) | 2.53(1) |
| Maximum | 5.00(5) | 4.47(4) | 2.97(2) | 6.77(8) | 3.27(3) | 6.47(7) | 5.37(6) | 1.70(1) |
表2
算法性能差异显著性比较"
| 测试函数序号 | 算法 | ||||||
| SSA | HSSA | MSSA | MSNSSA | OOSSA | PSO | GWO | |
| 1 | S+ | S+ | NS- | S+ | S+ | S+ | S+ |
| 2 | S+ | S+ | NS+ | S+ | S+ | NS+ | S+ |
| 3 | S+ | S+ | S- | S+ | S+ | S+ | S+ |
| 4 | S+ | S+ | NS- | S+ | S+ | S+ | S+ |
| 5 | NS+ | S+ | NS+ | S+ | NS+ | S+ | S+ |
| 6 | S+ | S+ | S+ | S+ | S+ | S- | S+ |
| 7 | S+ | S+ | S- | S+ | S+ | NS+ | S+ |
| 8 | NS+ | S+ | S+ | S+ | S- | S- | NS- |
| 9 | S+ | S+ | S+ | S+ | S- | S+ | S+ |
| 10 | S+ | S+ | S+ | S+ | S+ | S- | NS+ |
| 11 | S+ | NS+ | NS+ | S+ | NS+ | S+ | NS+ |
| 12 | S+ | S+ | S+ | S+ | S+ | S+ | S+ |
| 13 | S+ | S+ | S+ | S+ | S- | S+ | NS- |
| 14 | S+ | S+ | NS+ | S+ | NS+ | S+ | S+ |
| 15 | S+ | S+ | S+ | S+ | S+ | S+ | S+ |
| 16 | S+ | S+ | NS+ | S+ | S+ | S+ | S+ |
| 17 | S+ | S+ | NS+ | S+ | S+ | S+ | NS- |
| 18 | S+ | S+ | S+ | S+ | S- | S+ | S+ |
| 19 | S+ | S+ | NS+ | S+ | S+ | S+ | S+ |
| 20 | S+ | S+ | S+ | S+ | S- | S+ | S+ |
| 21 | S+ | S+ | NS- | S+ | S+ | S+ | NS+ |
| 22 | S+ | S+ | NS+ | S+ | NS+ | S+ | S- |
| 23 | S+ | S+ | NS- | S+ | S+ | S+ | S+ |
| 24 | S+ | S+ | S+ | S+ | S+ | S+ | S+ |
| 25 | S+ | S+ | S+ | S+ | S- | S+ | S+ |
| 26 | S+ | S+ | NS+ | NS+ | S+ | S+ | NS- |
| 27 | S+ | S+ | NS+ | S+ | S+ | S+ | NS- |
| 28 | S+ | S+ | S+ | S+ | S+ | S+ | NS+ |
| 29 | S+ | S+ | NS- | S+ | S+ | NS+ | NS- |
| 30 | S+ | S+ | NS- | S+ | S+ | S+ | S+ |
| 1 |
CHEN H , HEIDARI A A , CHEN H , et al. Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies[J]. Future Generation Computer Systems, 2020, 111, 175- 198.
doi: 10.1016/j.future.2020.04.008 |
| 2 |
RODRÍGUEZ-ESPARZA E , ZANELLA-CALZADA L A , OLIVA D , et al. An efficient Harris hawks-inspired image segmentation method[J]. Expert Systems with Applications, 2020, 155, 113428.
doi: 10.1016/j.eswa.2020.113428 |
| 3 |
SONG S , WANG P , HEIDARI A A , et al. Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns[J]. Knowledge-Based Systems, 2021, 215, 106425.
doi: 10.1016/j.knosys.2020.106425 |
| 4 | THAHER T , HEIDARI A A , MAFARJA M , et al. Evolutionary machine learning techniques. Algorithms for intelligent systems: binary harris hawks optimizer for high-dimensional, low sample size feature selection[M]. Singapore: Springer, 2020. |
| 5 |
WEI Y , LV H , CHEN M , et al. Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone Harris hawks optimizer[J]. IEEE Access, 2020, 8, 76841- 76855.
doi: 10.1109/ACCESS.2020.2982796 |
| 6 |
ZHANG Y , LIU R , WANG X , et al. Boosted binary Harris hawks optimizer and feature selection[J]. Engineering with Computers, 2021, 37 (4): 3741- 3770.
doi: 10.1007/s00366-020-01028-5 |
| 7 | 汤安迪, 韩统, 徐登武, 等. 使用高斯分布估计策略的改进樽海鞘群算法[J]. 系统工程与电子技术, 2022, 44 (7): 2229- 2240. |
| TANG A D , HAN T , XU D W , et al. An improved salp swarm algorithm using Gaussian distribution estimation strategy[J]. Systems Engineering and Electronics, 2022, 44 (2): 2229- 2240. | |
| 8 |
MIRJALILI S , MOHAMMAD S , LEWIS A . Grey Wolf optimizer[J]. Advances in Engineering Software, 2014, 69, 46- 61.
doi: 10.1016/j.advengsoft.2013.12.007 |
| 9 |
CHANTAR H , MAFARJA M , ALSAWALQAH H , et al. Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification[J]. Neural Computing and Applications, 2020, 32 (16): 12201- 12220.
doi: 10.1007/s00521-019-04368-6 |
| 10 |
HEIDARI A A , PAHLAVANI P . An efficient modified grey wolf optimizer with Lévy flight for optimization tasks[J]. Applied Soft Computing Journal, 2017, 60, 115- 134.
doi: 10.1016/j.asoc.2017.06.044 |
| 11 |
HEIDARI A A , ALI ABBASPOUR R , CHEN H . Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training[J]. Applied Soft Computing Journal, 2019, 81, 105521.
doi: 10.1016/j.asoc.2019.105521 |
| 12 |
KARABOGA D , AKAY B . A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214 (1): 108- 132.
doi: 10.1016/j.amc.2009.03.090 |
| 13 |
YAVUZ G , DURMUŞ B , AYDIN D . Artificial bee colony algorithm with distant savants for constrained optimization[J]. Applied Soft Computing, 2022, 116, 108343.
doi: 10.1016/j.asoc.2021.108343 |
| 14 |
THIRUGNANASAMBANDAM K , RAJESWARI M , BHATTACHARYYA D , et al. Directed artificial bee colony algorithm with revamped search strategy to solve global numerical optimization problems[J]. Automated Software Engineering, 2022, 29, 13.
doi: 10.1007/s10515-021-00306-w |
| 15 |
MIRJALILI S , LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008 |
| 16 |
CAO Y , WANG Q , CHENG W , et al. Risk-constrained optimal operation of fuel cell/photovoltaic/battery/grid hybrid energy system using downside risk constraints method[J]. International Journal of Hydrogen Energy, 2020, 45 (27): 14108- 14118.
doi: 10.1016/j.ijhydene.2020.03.090 |
| 17 |
CHEN H , YANG C , HEIDARI A A , et al. An efficient double adaptive random spare reinforced whale optimization algorithm[J]. Expert Systems with Applications, 2020, 154, 113018.
doi: 10.1016/j.eswa.2019.113018 |
| 18 |
HEIDARI A A , ALJARAH I , FARIS H , et al. An enhanced associative learning-based exploratory whale optimizer for global optimization[J]. Neural Computing and Applications, 2020, 32 (9): 5185- 5211.
doi: 10.1007/s00521-019-04015-0 |
| 19 |
LUO J , CHEN H , HEIDARI A A , et al. Multi-strategy boosted mutative whale-inspired optimization approaches[J]. Applied Mathematical Modelling, 2019, 73, 109- 123.
doi: 10.1016/j.apm.2019.03.046 |
| 20 |
MAFARJA M , HEIDARI A A , HABIB M , et al. Augmented whale feature selection for IoT attacks: structure, analysis and applications[J]. Future Generation Computer Systems, 2020, 112, 18- 40.
doi: 10.1016/j.future.2020.05.020 |
| 21 | TU J , CHEN H , LIU J , et al. Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance[J]. Knowledge-Based Systems, 2020, 212, 106642. |
| 22 | WANG M , CHEN H . Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis[J]. Applied Soft Computing Journal, 2020, 88, 1- 20. |
| 23 |
WOLPERT D H , NNA D , ROAD H , et al. No free lunch theorems for optimization[J]. IEEE Trans. on Evolutionary Computation, 1997, 1 (1): 67- 82.
doi: 10.1109/4235.585893 |
| 24 |
MIRJALILI S , GANDOMI A H , MIRJALILI S Z , et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114, 163- 191.
doi: 10.1016/j.advengsoft.2017.07.002 |
| 25 |
QAIS M H , HASANIEN H M , ALGHUWAINEM S . Enhanced salp swarm algorithm: application to variable speed wind generators[J]. Engineering Applications of Artificial Intelligence, 2019, 80, 82- 96.
doi: 10.1016/j.engappai.2019.01.011 |
| 26 | 王宗山, 丁洪伟, 王杰, 等. 基于正交设计的折射反向学习樽海鞘群算法[J]. 哈尔滨工业大学学报, 2022, 54 (11): 122- 136. |
| WANG Z S , DING H W , WANG J , et al. Salp swarm algorithm based on orthogonal refracted opposition-based learning[J]. Journal of Harbin Institute of Technology, 2022, 54 (11): 122- 136. | |
| 27 |
黄小根, 钟尚勤. 一种多策略驱动的改进樽海鞘群算法[J]. 计算机仿真, 2022, 39 (1): 308- 311.
doi: 10.3969/j.issn.1006-9348.2022.01.065 |
|
HUANG X G , ZHONG S Q . A multi-strategy-driven salp swarm algorithm for global optimization[J]. Computer Simulation, 2022, 39 (1): 308- 311.
doi: 10.3969/j.issn.1006-9348.2022.01.065 |
|
| 28 | 陈忠云, 张达敏, 辛梓芸. 多子群的共生非均匀高斯变异樽海鞘群算法[J]. 自动化学报, 2022, 48 (5): 1307- 1317. |
| CHEN Z Y , ZHANG D M , XIN Z Y . Multi-subpopulation based symbiosis and non-uniform gaussian mutation salp swarm algorithm[J]. Acta Automatica Sinica, 2022, 48 (5): 1307- 1317. | |
| 29 | 陈忠云, 张达敏, 辛梓芸. 正弦余弦算法的樽海鞘群算法[J]. 计算机应用与软件, 2020, 37 (9): 209- 214. |
| CHEN Z Y , ZHANG D M , XIN Z Y . Salp swarm algorithm using sine cosine algorithm[J]. Computer Applications and Software, 2020, 37 (9): 209- 214. | |
| 30 | 杨博, 钟林恩, 朱德娜, 等. 部分遮蔽下改进樽海鞘群算法的光伏系统最大功率跟踪[J]. 控制理论与应用, 2019, 36 (3): 339- 352. |
| YANG B , ZHONG L E , ZHU D N , et al. Modified salp swarm algorithm based maximum power point tracking of power-voltage system under partial shading condition[J]. Control Theory and Applications, 2019, 36 (3): 339- 352. | |
| 31 |
OZBAY F A , ALATAS B . Adaptive salp swarm optimization algorithms with inertia weights for novel fake news detection model in online social media[J]. Multimedia Tools and Applications, 2021, 80, 34333- 34357.
doi: 10.1007/s11042-021-11006-8 |
| 32 |
BRAIK M , SHETA A , TURABIEH H , et al. A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm[J]. Soft Computing, 2021, 25 (1): 181- 206.
doi: 10.1007/s00500-020-05130-0 |
| 33 | 邢致恺, 贾鹤鸣, 宋文龙. 基于莱维飞行樽海鞘群优化算法的多阈值图像分割[J]. 自动化学报, 2021, 47 (2): 363- 377. |
| XING Z K , JIA H M , SONG W L . Levyflight trajectory-based salp swarm algorithm for multilevel thresholding image segmentation[J]. Acta Automatica Sinica, 2021, 47 (2): 363- 377. | |
| 34 | NAUTIYAL B , PRAKASH R , VIMAL V , et al. Improved salp swarm algorithm with mutation schemes for solving global optimization and engineering problems[J]. Engineering with Computers, 2021, 38, 3927- 3949. |
| 35 | 周密, 王潇棠, 闫河, 等. 一种混沌映射动态惯性权重的樽海鞘群算法[J]. 小型微型计算机系统, 2023, 44 (2): 131- 318. |
| ZHOU M , WANG X T , YAN H , et al. Salp swarm algorithm based on chaotic map and dynamic inertia weight[J]. Journal of Chinese micro Computer Systems, 2023, 44 (2): 131- 318. |
| [1] | 杨振亚, 张智, 尚晓兵, 曹择骏, 孙喆轩. 基于改进多输出支持向量的船舶航迹预测[J]. 系统工程与电子技术, 2023, 46(1): 173-181. |
| [2] | 汤安迪, 韩统, 徐登武, 周欢, 谢磊. 使用高斯分布估计策略的改进樽海鞘群算法[J]. 系统工程与电子技术, 2022, 44(7): 2229-2240. |
| [3] | 巩军, 胡涛, 刘生学. 基于关键链和混合优化算法的舰船多项目并行建造进度管理方法[J]. 系统工程与电子技术, 2020, 42(8): 1784-1793. |
| [4] | 薛俊杰, 王瑛, 孟祥飞, 肖吉阳. 二进制反向学习烟花算法求解多维背包问题[J]. 系统工程与电子技术, 2017, 39(2): 451-458. |
| [5] | 张天骄, 李济生, 李晶, 杨宜康, 杜卫兵. 基于混合蚁群优化的天地一体化调度方法[J]. 系统工程与电子技术, 2016, 38(7): 1555-1562. |
| [6] | 刘福才, 窦金梅, 王树恩. 基于智能优化算法的T-S模糊模型辨识[J]. 系统工程与电子技术, 2013, 35(12): 2643-2650. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||