系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (7): 2229-2240.doi: 10.12305/j.issn.1001-506X.2022.07.19

• 系统工程 • 上一篇    下一篇

使用高斯分布估计策略的改进樽海鞘群算法

汤安迪1,2, 韩统1,*, 徐登武3, 周欢1, 谢磊2   

  1. 1. 空军工程大学航空工程学院, 陕西 西安 710038
    2. 空军工程大学研究生院, 陕西 西安 710038
    3. 中国人民解放军94855部队, 浙江 衢州 324000
  • 收稿日期:2021-02-09 出版日期:2022-06-22 发布日期:2022-06-28
  • 通讯作者: 韩统
  • 作者简介:汤安迪(1996—), 男, 硕士研究生, 主要研究方向为无人机任务规划和优化算法|韩统(1980—), 男, 副教授, 博士, 主要研究方向为机载武器系统和无人机任务规划|徐登武(1980—), 男, 工程师, 博士, 主要研究方向为机载武器系统|周欢(1989—), 男, 讲师, 博士, 主要研究方向为多无人机协同控制技术|谢磊(1997—), 男, 硕士研究生, 主要研究方向为无人作战系统与技术
  • 基金资助:
    陕西省自然科学基金(2020JQ-481);陕西省自然科学基金(2021JM-224);航空科学基金(201951096002)

An improved salp swarm algorithm using Gaussian distribution estimation strategy

Andi TANG1,2, Tong HAN1,*, Dengwu XU3, Huan ZHOU1, lei XIE2   

  1. 1. Aeronautics Engineering Institute, Air Force Engineering University, Xi'an 710038, China
    2. Graduate School, Air Force Engineering University, Xi'an 710038, China
    3. Unit 94855 of the PLA, Quzhou 324000, China
  • Received:2021-02-09 Online:2022-06-22 Published:2022-06-28
  • Contact: Tong HAN

摘要:

针对樽海鞘群算法在求解复杂优化问题时存在种群多样性减弱、易于陷入局部最优等不足, 提出了一种使用高斯分布估计策略的改进樽海鞘群算法(salp swarm algorithm using elite pool strategy and Gaussian distribution estimation strategy, GDESSA)。首先提出一种精英池选择策略, 领导者位置在每次更新时随机从精英池中选择一个个体作为食物源, 增强领导者的探索能力, 丰富种群多样性。其次利用高斯分布估计策略对追随者公式进行改进, 通过拟合优势群体信息, 修正种群进化方向, 增强算法的寻优能力。使用CEC2017测试函数对改进算法进行测试, 并通过统计分析、收敛性分析、稳定性分析、Wilcoxon检验、Friedman检验、Iman-Davenport检验评估改进算法性能。仿真结果表明: 本文提出的改进策略能有效提高算法性能; 提出的改进算法相比其他算法, 具有更快的收敛速度和更好的收敛精度。

关键词: 樽海鞘群算法, 高斯分布估计, 精英池, 函数优化

Abstract:

In order to address the shortcomings of the salp swarm algorithm (SSA) in solving complex optimization problems, such as reduced population diversity and easy to fall into local optimum, an improved SSA using elite pool strategy and Gaussian distribution estimation strategy (GDESSA) is proposed. Firstly, an elite pool strategy is proposed. When the leader position is updated at each time, an individual from the elite pool is randomly selected as a food source, which enhances the exploration ability of the leader and enriches the population diversity. Secondly, the follower formula is improved using a Gaussian distribution estimation strategy. By fitting the dominant population information, the evolutionary direction of the population is modified, and the algorithm's optimization ability is enhanced. The proposed algorithm is tested using the CEC2017 test suite and the performance of the improved algorithm is evaluated by statistical analysis, convergence analysis, stability analysis, Wilcoxon test, Friedman test, and Iman-Davenport test. The simulation results show that the improved strategy proposed can effectively improve the performance of the algorithm, and the proposed algorithm has faster convergence speed and better convergence accuracy compared with other algorithms.

Key words: salp swarm algorithm (SSA), Gaussian distribution estimation, elite pool, function optimization

中图分类号: