| 1 | MULLER R ,  BARLEBEN A ,  HAUSSLER S , et al.  A novel approach for the global detection and nowcasting of deep convection and thunderstorms[J]. Remote Sensing, 2022, 14 (14): 3372- 3384. doi: 10.3390/rs14143372
 | 
																													
																						| 2 | 黄兴友, 马玉蓉, 胡苏蔓.  基于深度学习的天气雷达回波序列外推及效果分析[J]. 气象学报, 2021, 79 (5): 817- 827. | 
																													
																						|  | HUANG X Y ,  MA Y R ,  HU S M .  Extrapolation and effect analysis of weather radar echo sequence based on deep learning[J]. Journal of Meteorology, 2021, 79 (5): 817- 827. | 
																													
																						| 3 | ZHANG F G ,  LAI C ,  CHEN W J .  Weather radar echo extrapolation method based on deep learning[J]. Atmosphere, 2022, 13 (5): 815- 834. doi: 10.3390/atmos13050815
 | 
																													
																						| 4 | ZHONG S X, ZENG X X, LING Q, et al. Spatiotemporal con-volutional LSTM for radar echo extrapolation[C]//Proc. of the 54th Asilomar Conference on Signals, Systems, and Computers, 2020: 58-62. | 
																													
																						| 5 | YU Y ,  SI X S ,  HU C H , et al.  A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31 (7): 1235- 1270. doi: 10.1162/neco_a_01199
 | 
																													
																						| 6 | MIKOLOV T, KARAFIÁT M, BURGET L, et al. Recurrent neural network based language model[C]//Proc. of the 11th Annual Conference of the International Speech Communication Association, 2010. | 
																													
																						| 7 | 张心宇, 刘源, 宋佳凝.  基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44 (3): 939- 947. | 
																													
																						|  | ZHANG X Y ,  LIU Y ,  SONG J N .  Short-term orbit prediction based on LSTM neural network[J]. Systems Engineering and Electronics, 2022, 44 (3): 939- 947. | 
																													
																						| 8 | 何春蓉, 朱江.  基于注意力机制的GRU神经网络安全态势预测方法[J]. 系统工程与电子技术, 2021, 43 (1): 258- 266. | 
																													
																						|  | HE C R ,  ZHU J .  Security situation prediction method of GRU neural network based on attention mechanism[J]. Systems Engineering and Electronics, 2021, 43 (1): 258- 266. | 
																													
																						| 9 | 胡玉可, 夏维, 胡笑旋, 等.  基于循环神经网络的船舶航迹预测[J]. 系统工程与电子技术, 2020, 42 (4): 871- 877. | 
																													
																						|  | HU Y K ,  XIA W ,  HU X X , et al.  Vessel trajectory prediction based on recurrent neural network[J]. Systems Engineering and Electronics, 2020, 42 (4): 871- 877. | 
																													
																						| 10 | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proc. of the 29th Conference on Neural Information Processing Systems, 2015: 802-810. | 
																													
																						| 11 | SHI X J, GAO Z H, LAUSEN L, et al. Deep learning for precipitation nowcasting: a benchmark and a new model[C]//Proc. of the 31st Conference on Neural Information Processing Systems, 2017: 5617-5627. | 
																													
																						| 12 | JING J R, LI Q, PENG X, et al. HPRNN: a hierarchical sequence prediction model for long-term weather radar echo extrapolation[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 4142-4146. | 
																													
																						| 13 | WANG Y B, LONG M S, WANG J M, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 879-888. | 
																													
																						| 14 | WANG Y B, GAO Z F, LONG M S, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]//Proc. of the 35th International Conference on Machine Learning, 2018, 80: 5123-5132. | 
																													
																						| 15 | WANG Y B ,  WU H X ,  ZHANG J J , et al.  PredRNN: a recurrent neural network for spatiotemporal predictive learning[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2021, 2013- 2029. | 
																													
																						| 16 | 韩丰, 龙明盛, 李月安, 等.  循环神经网络在雷达临近预报中的应用[J]. 应用气象学报, 2019, 30 (1): 61- 69. | 
																													
																						|  | HAN F ,  LONG M S ,  LI Y A , et al.  Application of recurrent neural networks in radar proximity forecasting[J]. Journal of Applied Meteorological Science, 2019, 30 (1): 61- 69. | 
																													
																						| 17 | WANG Y B, JIANG L, YANG M H, et al. Eidetic 3D LSTM: a model for video prediction and beyond[C]//Proc. of the International Conference on Learning Representations, 2019. | 
																													
																						| 18 | WANG Y B, ZHANG J J, ZHU H Y, et al. Memory in me-mory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9154-9162. | 
																													
																						| 19 | YUUKI T ,  JUN I .  Long short-term memory recurrent-neural-network-based bandwidth extension for automatic speech recognition[J]. Acoustical Science and Technology, 2016, 37 (6): 319- 321. | 
																													
																						| 20 | HOCHREITER S ,  SCHMIDHUBER J .  Long short-term me-mory[J]. Neural Computation, 1997, 9 (8): 1735- 1780. | 
																													
																						| 21 | WANG Z ,  BOVIK A ,  SHEIKH H , et al.  Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans.on Image Processing, 2004, 13 (4): 600- 612. | 
																													
																						| 22 | 龚勋, 胡嘉骏, 徐年平, 等.  基于深度学习的多普勒气象雷达回波外推短临预报对比研究[J]. 中国军转民, 2022, (13): 76- 80. | 
																													
																						|  | GONG X ,  HU J J ,  XU N P , et al.  A comparative study of Doppler weather radar echo extrapolation short prognosis based on deep learning[J]. Defense Industry Conversion in China, 2022, (13): 76- 80. |