系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (4): 851-862.doi: 10.3969/j.issn.1001-506X.2020.04.16
收稿日期:
2019-05-13
出版日期:
2020-03-28
发布日期:
2020-03-28
作者简介:
田勇(1976-),男,副教授,硕士研究生导师,博士,主要研究方向为空中交通管理。E-mail:基金资助:
Yong TIAN(), Mengyuan SUN(), Lili WAN()
Received:
2019-05-13
Online:
2020-03-28
Published:
2020-03-28
Supported by:
摘要:
为了合理分配管制资源,保障高效运作终端区,通过对终端区空域规划运行效能进行量化分析,进而掌握其运行情况及发展形势。首先建立了基于8类关键性能领域的终端区空域规划运行评价指标体系。然后采用状态分类评估法构造综合评价函数,利用基于随机森林(random forest, RF)算法的可拓层次分析法(extension analytic hierarchy process, EAHP)分析计算指标权重,达到综合考虑指标影响、加强指标量化程度、减少研究过程主观性的目的。最后,以广州终端区和武汉进近为例,对八大关键性能指标进行实例分析,采用蒙特卡洛(Monte Carlo)模拟验证了指标计算结果的可靠性,提升了指标的认可度,验证了系统评价结果的准确性。
中图分类号:
田勇, 孙梦圆, 万莉莉. 终端区空域规划运行评价指标体系[J]. 系统工程与电子技术, 2020, 42(4): 851-862.
Yong TIAN, Mengyuan SUN, Lili WAN. Evaluation index system of airspace planning and operation in terminal area[J]. Systems Engineering and Electronics, 2020, 42(4): 851-862.
表1
终端区空域规划运行评价指标表"
准则层 | 指标 |
安全P1 | 容流告警次数P12,落地航空器五边最后间隔余度P12,航迹对潜在冲突告警时间P13,冲突次数P14,超过监视告警参数的统计时长P15, 5/5~10 n mile内航空器对数量P16,潜在冲突最接近距离P17; |
效率P2 | 进场飞行效率P21,航班放行正常率P22,非直线系数P23; |
延误P3 | 飞行程序管制适用性P31,高峰小时延误P32,进场航班延误架次比P33,全天平均延误P34,延误成本P35,进场航班平均延误时间P36; |
容量P4 | 单机场终端区跑道容量利用率P41,终端区边界点容量P42,机场离场容量P43,终端区容量饱和度P44,机场进离场容量P45,终端区小时高峰值P46,机场进场容量P47,扇区容量饱和度P48; |
环境P5 | 噪声等级P51,燃油消耗P52,污染物排放P54; |
可预测 性P6 | 恶劣天气影响占比P61,延误变化率P62,终端区实际流量与计划流量之比P63; |
灵活 性P7 | 航空器连续爬升/下降性能P71,特殊空域航班使用时长占比P72; |
空域结 构P8 | 终端区进出点数量P86,终端区边界小角度交叉角数量P84,双向航路占比P81,边界交叉点到终端区边界的距离P83,飞行可用高度层数量P82,不同类型不同角度的交叉点数量P85 |
表2
指标值标准化结果"
区域 | P11 | P12 | P13 | P14 | P15 | P16 | P17 | P21 | P22 | P23 |
1 | 0.500 0 | 0.333 3 | 0.153 8 | 0.000 0 | 0.813 8 | 0.109 9 | 0.856 2 | 0.083 5 | 0.266 7 | 0.300 0 |
2 | 0.000 0 | 0.241 7 | 0.000 0 | 0.000 0 | 0.062 5 | 0.000 0 | 0.000 0 | 0.597 8 | 0.350 6 | 0.309 4 |
区域 | P31 | P32 | P33 | P34 | P35 | P36 | P41 | P42 | P43 | P44 |
1 | 0.628 6 | 0.431 8 | 0.330 7 | 0.403 8 | 0.178 4 | 0.025 5 | 0.430 6 | 0.266 7 | 0.300 0 | 0.100 0 |
2 | 0.753 4 | 0.009 8 | 0.032 0 | 0.239 2 | 0.114 4 | 0.004 1 | 0.791 9 | 0.350 6 | 0.309 4 | 0.707 8 |
区域 | P45 | P46 | P47 | P48 | P51 | P52 | P53 | P61 | P62 | P63 |
1 | 0.300 0 | 0.5000 | 0.300 0 | 0.083 2 | 0.549 0 | 0.423 1 | 0.613 9 | 0.000 0 | 0.407 3 | 0.075 9 |
2 | 0.342 8 | 0.625 0 | 0.376 2 | 0.888 8 | 0.468 8 | 0.139 3 | 0.243 3 | 0.043 2 | 0.028 9 | 0.004 5 |
区域 | P71 | P72 | P81 | P82 | P83 | P84 | P85 | P86 | ||
1 | 0.566 7 | 0.000 0 | 0.190 5 | 0.413 2 | 0.207 7 | 0.000 0 | 0.223 3 | 0.473 5 | ||
2 | 0.642 4 | 1.000 0 | 0.406 3 | 0.000 0 | 0.000 0 | 0.000 0 | 0.201 1 | 0.325 0 |
表4
综合评价值及其等级"
样本 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
综合评价值 | 0.141 | 0.136 | 0.138 | 0.188 | 0.131 | 0.116 | 0.167 | 0.132 | 0.120 |
等级 | 3 | 2 | 2 | 6 | 2 | 1 | 5 | 2 | 1 |
样本 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
综合评价值 | 0.140 | 0.128 | 0.135 | 0.140 | 0.140 | 0.140 | 0.141 | 0.141 | 0.120 |
等级 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 1 |
样本 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
综合评价值 | 0.163 | 0.150 | 0.138 | 0.176 | 0.126 | 0.135 | 0.137 | 0.132 | 0.133 |
等级 | 4 | 3 | 2 | 6 | 1 | 2 | 2 | 2 | 2 |
样本 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
综合评价值 | 0.127 | 0.171 | 0.165 | 0.120 | 0.139 | 0.139 | 0.156 | 0.126 | 0.154 |
等级 | 1 | 5 | 5 | 1 | 2 | 2 | 4 | 1 | 4 |
样本 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
综合评价值 | 0.158 | 0.141 | 0.124 | 0.127 | 0.147 | 0.138 | 0.141 | 0.138 | 0.138 |
等级 | 4 | 3 | 1 | 1 | 3 | 2 | 3 | 2 | 2 |
样本 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
综合评价值 | 0.168 | 0.138 | 0.156 | 0.147 | 0.128 | 0.173 | 0.121 | 0.173 | 0.134 |
等级 | 5 | 2 | 4 | 3 | 2 | 5 | 1 | 5 | 2 |
样本 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
综合评价值 | 0.142 | 0.159 | 0.123 | 0.148 | 0.123 | 0.141 | 0.162 | 0.128 | 0.177 |
等级 | 3 | 4 | 1 | 3 | 1 | 3 | 4 | 2 | 6 |
样本 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |
综合评价值 | 0.126 | 0.134 | 0.142 | 0.127 | 0.147 | 0.151 | 0.147 | 0.143 | 0.155 |
等级 | 1 | 2 | 3 | 1 | 3 | 3 | 3 | 3 | 4 |
样本 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |
综合评价值 | 0.121 | 0.155 | 0.126 | 0.142 | 0.156 | 0.151 | 0.153 | 0.147 | 0.183 |
等级 | 1 | 4 | 1 | 3 | 4 | 3 | 4 | 3 | 6 |
样本 | 82 | 83 | 84 | 85 | 86 | ||||
综合评价值 | 0.176 | 0.139 | 0.124 | 0.134 | 0.138 | ||||
等级 | 6 | 2 | 1 | 2 | 2 |
表5
指标权重"
指标 | P11 | P12 | P13 | P14 | P15 | P16 | P17 | P21 | P22 | P23 |
权重 | 0.022 1 | 0.029 4 | 0.024 7 | 0.026 9 | 0.039 9 | 0.026 7 | 0.052 8 | 0.004 9 | 0.022 4 | 0.027 1 |
指标 | P31 | P32 | P33 | P34 | P35 | P36 | P41 | P42 | P43 | P44 |
权重 | 0.036 9 | 0.024 5 | 0.008 5 | 0.027 9 | 0.018 7 | 0.012 7 | 0.032 1 | 0.044 0 | 0.014 1 | 0.041 0 |
指标 | P45 | P46 | P47 | P48 | P51 | P52 | P53 | P61 | P62 | P63 |
权重 | 0.013 8 | 0.016 6 | 0.014 7 | 0.019 9 | 0.033 0 | 0.035 9 | 0.011 4 | 0.035 3 | 0.018 4 | 0.036 6 |
指标 | P71 | P72 | P81 | P82 | P83 | P84 | P85 | P86 | ||
权重 | 0.048 3 | 0.032 2 | 0.032 4 | 0.015 3 | 0.023 4 | 0.026 4 | 0.022 4 | 0.027 0 |
表16
指标认可度统计特征值"
准则层 | 指标 | 均值 | 标准差 |
P1 | P11 | 3.840 0 | 0.059 8 |
P12 | 4.040 0 | 0.075 6 | |
P13 | 4.000 0 | 0.014 5 | |
P14 | 4.040 0 | 0.014 3 | |
P15 | 3.800 0 | 0.059 8 | |
P16 | 4.200 0 | 0.030 8 | |
P17 | 3.800 0 | 0.043 2 | |
P2 | P21 | 4.520 0 | 0.013 2 |
P22 | 3.960 0 | 0.017 4 | |
P23 | 4.080 0 | 0.018 5 | |
P3 | P31 | 3.920 0 | 0.023 8 |
P32 | 3.920 0 | 0.048 3 | |
P33 | 3.960 0 | 0.141 9 | |
P34 | 3.840 0 | 0.054 2 | |
P35 | 3.920 0 | 0.094 4 | |
P36 | 4.080 0 | 0.090 7 | |
P4 | P41 | 3.800 0 | 0.035 5 |
P42 | 4.000 0 | 0.027 6 | |
P43 | 3.760 0 | 0.039 8 | |
P44 | 4.360 0 | 0.022 4 | |
P45 | 3.840 0 | 0.030 0 | |
P46 | 4.120 0 | 0.013 8 | |
P47 | 3.720 0 | 0.043 8 | |
P48 | 4.400 0 | 0.023 5 | |
P5 | P51 | 3.760 0 | 0.100 0 |
P52 | 3.920 0 | 0.024 9 | |
P53 | 3.720 0 | 0.025 3 | |
P6 | P61 | 3.640 0 | 0.030 3 |
P62 | 3.800 0 | 0.030 6 | |
P63 | 4.320 0 | 0.024 8 | |
P7 | P71 | 3.880 0 | 0.052 3 |
P72 | 3.920 0 | 0.038 1 | |
P8 | P81 | 4.120 0 | 0.059 4 |
P82 | 4.200 0 | 0.011 1 | |
P83 | 4.200 0 | 0.035 2 | |
P84 | 4.120 0 | 0.033 2 | |
P85 | 4.040 0 | 0.057 3 | |
P86 | 4.160 0 | 0.031 2 |
1 | International Civil Aviation Organization. Global air traffic management operational concept[R]. Montreal: ICAO, 2005. |
2 | Eurocontrol Performance Review Unit. ATM airport performance (ATMAP) framework, measuring airport airside and nearby airspace performance (version1)[R]. Brussels: Eurocotrol, 2009. |
3 | SESAR consortium. SESAR master plan (the European ATM master plan)[R]. Brussels: SESAR Definition Phase Project, European Commission and Euro Control, 2008. |
4 | Federal Aviation Administration. FAA modernization and reform act of 2012: section 214[R]. Washington: Federal Aviation Administration, 2012. |
5 | ROZEN N. Performance-based air traffic management: evaluation of en route benefits[C]//Proc.of the 7th AIAA Aviation Technology, Integration and Operations Conference, 2012: 1-18. |
6 | LINTNER T M, SMITH S D, SUMURTHWAITE S, et al. The aerospace performance factor: utilization of the analytical hierarchy process to develop a balanced performance and safety indicator of national airspace system for the federal aviation administration[C]//Proc.of the International Symposium on the Analytic Hierarchy/Network Process, 2009: 1556-8296. |
7 | ZHANG J P, ZHANG P, LI Z, et al. A sector capacity assessment method based on airspace utilization efficiency[C]//Proc.of the International Conference on Control Engineering and Artificial Intelligence, 2018: 12-14. |
8 |
SIDIROPOULOS S , MAJUMDAR A , HAN K . A framework for the optimization of terminal airspace operations in multi-airport systems[J]. Transportation Research Part B: Methodological, 2018, 110, 160- 187.
doi: 10.1016/j.trb.2018.02.010 |
9 | HOSSAIN M M , ALAM S , DELAHAYE D . An evolutionary computational framework for capacity-safety trade-off in an air transportation network[J]. Chinese Journal of Aeronautics, 2019, 32 (4): 999- 1010. |
10 | CHEN J T, YOUSEFI A, KRISHNA S, et al. Weather avoidance optimal routing for extended terminal airspace in support of dynamic airspace configuration[C]//Proc.of the 35th Digital Avionics Systems Conference, 2012: 301-316. |
11 | MARINA S , DANIEL D , CATHERINE M , et al. Dynamic airspace configuration by genetic algorithm[J]. Journal of Traffic & Transportation Engineering, 2017, 4 (3): 300314. |
12 |
STAVROS S , HAN K , ARNAB M , et al. Robust identification of air traffic flow patterns in Metroplex terminal areas under demand uncertainty[J]. Transportation Research Part C: Emerging Technologies, 2017, 75, 212- 227.
doi: 10.1016/j.trc.2016.12.011 |
13 |
PRANDINI M , PIRODDI L , PUECHMOREL S , et al. Toward air traffic complexity assessment in new generation air traffic management systems[J]. IEEE Trans.on Intelligent Transportation Systems, 2011, 12 (3): 809- 818.
doi: 10.1109/TITS.2011.2113175 |
14 |
CLARKE J P , REN L , MCCLAIN E , et al. Evaluating concepts for operations in metroplex terminal area airspace[J]. Journal of Aircraft, 2012, 49 (3): 758- 773.
doi: 10.2514/1.C031227 |
15 |
ZHAO W , ALAM S , ABBASS H A . Evaluating ground-air network vulnerabilities in an integrated terminal maneuvering area using co-evolutionary computational red teaming[J]. Transportation Research Part C: Emerging Technologies, 2013, 29, 32- 54.
doi: 10.1016/j.trc.2012.12.003 |
16 |
WANG H , WEN R , ZHAO Y . Analysis of topological characteristics in air traffic situation networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, 2015, 229 (13): 2497- 2505.
doi: 10.1177/0954410015578482 |
17 |
张洪海, 胡勇, 杨磊, 等. 多机场终端区微观交通流建模与仿真分析[J]. 西南交通大学学报, 2015, 50 (2): 368- 374.
doi: 10.3969/j.issn.0258-2724.2015.02.025 |
ZHANG H H , HU Y , YANG L , et al. Modeling and simulation analysis of microscopic traffic flow in multi-airport terminal area[J]. Journal of Southwest Jiao Tong University, 2015, 50 (2): 368- 374.
doi: 10.3969/j.issn.0258-2724.2015.02.025 |
|
18 |
LI M Z , RYERSON M S . A data-driven approach to modeling high-density terminal areas: a scenario analysis of the new Beijing, China airspace[J]. Chinese Journal of Aeronautics, 2017, 30 (2): 538- 553.
doi: 10.1016/j.cja.2016.12.030 |
19 |
WANG H , XU X , ZHAO Y . Empirical analysis of aircraft clusters in air traffic situation networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, 2017, 231 (9): 1718- 1731.
doi: 10.1177/0954410016660870 |
20 |
RODREGUEZ D A , ADENSO D B , GONZALEZ T P L . Improving aircraft approach operations taking into account noise and fuel consumption[J]. Journal of Air Transport Management, 2019, 77, 46- 56.
doi: 10.1016/j.jairtraman.2019.03.004 |
21 | TIAN Y , WAN L L , YE B J . Optimization of terminal airspace operation with environmental considerations[J]. Transportation Research Part D, 2019, 63, 872- 889. |
22 |
KIM B , LI L H , CLARKE J P . Runway assignments that minimize terminal airspace and airport surface emissions[J]. Journal of Guidance, Control and Dynamics, 2014, 37 (3): 789- 798.
doi: 10.2514/1.61829 |
23 |
XIN B , XUE X D , XU J , et al. Aviation's emissions and contribution to the air quality in China[J]. Atmospheric Environment, 2019, 201, 121- 131.
doi: 10.1016/j.atmosenv.2019.01.005 |
24 | 熊婷.终端区空域规划运行评价指标体系研究[D].南京:南京航空航天大学, 2019. |
XIONG T. Research on evaluation index system of airspace planning and operation in terminal area[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. | |
25 | MA J . Generalised grey target decision method for mixed attributes with index weights containing uncertain numbers[J]. Journal of Intelligent and Fuzzy Systems, 2018, 34 (1): 12- 18. |
26 |
ZHU J , WANG E , SUN W . Application of Monte Carlo AHP in ranking coastal tourism environmental carrying capacity factors[J]. Asia Pacific Journal of Tourism Research, 2019, 24 (7): 644- 657.
doi: 10.1080/10941665.2019.1611610 |
27 |
UTKIN L V , KONSTANTINOV A V , CHUKANOV V S , et al. A weighted random survival forest[J]. Knowledge-Based Systems, 2019, 177, 136- 144.
doi: 10.1016/j.knosys.2019.04.015 |
28 | 蔡林霖.随机森林的模型选择及其并行化方法[D].哈尔滨:哈尔滨工业大学, 2012. |
CAI L L. Model selection of random forest and its parallelization method[D]. Harbin: Harbin Institute of Technology, 2012. | |
29 | 徐少成, 李东喜. 基于随机森林的加权特征选择算法[J]. 统计与决策, 2018, 34 (18): 25- 28. |
XU S C , LI D X . Weighted feature selection algorithm based on random forest[J]. Statistics and Decision, 2018, 34 (18): 25- 28. | |
30 |
ZHOU Q , ZHOU H , LI T . Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features[J]. Knowledge-Based Systems, 2016, 95, 1- 11.
doi: 10.1016/j.knosys.2015.11.010 |
31 | SHUVAJIT B , SRIKANTA M . Applications of machine learning for facies and fracture prediction using Bayesian network theory and random forest: case studies from the appalachian basin, USA[J]. Journal of Petroleum Science and Engineering, 2019, 170, 1005- 1017. |
32 | 彭健庭.重庆市电子商务企业评价指标体系构建及应用[D].重庆:重庆师范大学, 2016. |
PENG J T. Construction and application of evaluation index system of Chongqing e-commerce enterprises[D]. Chongqing: Chongqing Normal University, 2016. | |
33 |
KAMPEN K J . Reflections on and test of the metrological properties of summated rating, Likert and other scales based on sums of ordinal variables[J]. Measurement, 2019, 137, 428- 434.
doi: 10.1016/j.measurement.2019.01.083 |
34 | RAMOS A . Automatic differentiation for error analysis of Monte Carlo data[J]. Computer Physics Communications, 2018, 238, 19- 35. |
35 | 鲁帅, 宋戈, 杨一佳. 基于改进蒙特卡洛模拟的耕地生态安全时空特征研究-以齐齐哈尔市为例[J]. 东北师大学报(自然科学版), 2019, 51 (4): 137- 145. |
LU S , SONG G , YANG Y J . On the spatio-temporal characteristics of farmland ecological security for improving Monte Carlo simulation: a case study of Qiqihar city[J]. Journal of Northeast Normal University (Natural Science Edition), 2019, 51 (4): 137- 145. |
[1] | 卢元杰, 刘志敏, 孙智孝, 阚东. 基于模型的无人机系统架构综合评估方法[J]. 系统工程与电子技术, 2022, 44(4): 1239-1245. |
[2] | 姚智海, 刘建平, 王建平, 李伟, 任勃. 地面测控资源调度效能评估指标体系[J]. 系统工程与电子技术, 2020, 42(8): 1751-1758. |
[3] | 郝亮亮, 张金生, 李婷, 马啸宇. 导弹武器模拟训练考评系统设计[J]. 系统工程与电子技术, 2020, 42(4): 843-850. |
[4] | 邢志伟, 李彪, 罗谦. 过站航班地面保障运行效能评估[J]. 系统工程与电子技术, 2019, 41(5): 1071-1078. |
[5] | 王双川, 胡起伟, 李锋, 王强, 冉悄然, 马云飞. 装备维修保障效能评估研究综述[J]. 系统工程与电子技术, 2019, 41(10): 2271-2278. |
[6] | 李琳琳, 路云飞, 张壮, 和何. 基于云模型的指挥控制系统效能评估[J]. 系统工程与电子技术, 2018, 40(4): 815-822. |
[7] | 李琳琳, 路云飞, 张壮, 和何. 基于信息优势的指控系统指标体系构建及建模[J]. 系统工程与电子技术, 2018, 40(3): 577-582. |
[8] | 王永攀, 杨江平, 邓翔, 侯晓东. 基于贝叶斯网络的复杂装备维修质量评价模型[J]. 系统工程与电子技术, 2017, 39(3): 569-576. |
[9] | 方可, 周玉臣, 赵恩娇. 关于仿真模型验证指标体系的探讨[J]. 系统工程与电子技术, 2017, 39(11): 2592-2602. |
[10] | 黄智力, 罗键. 三角模糊数型不确定多指标决策的相似规划模型及其应用[J]. 系统工程与电子技术, 2016, 38(5): 1100-. |
[11] | 高炜, 张庆普, 敦晓彪, 赵天. 基于改进的可拓层次分析法和动态加权的航天高技术综合评价研究[J]. 系统工程与电子技术, 2016, 38(1): 102-109. |
[12] | 范阳涛, 汪民乐, 文苗苗, 陈大雷. 基于萤火虫算法层次分析法的弹道导弹突防效能分析[J]. 系统工程与电子技术, 2015, 37(4): 845-850. |
[13] | 陈奇,姜宁,吕明山,饶世钧. 基于效能的海军演习效果评估方法及关键技术[J]. Journal of Systems Engineering and Electronics, 2013, 35(6): 1226-1230. |
[14] | 李印凤, 胡明华, 谢华, 彭瑛. 基于可拓多层次状态分类的终端区利用率评价[J]. 系统工程与电子技术, 2013, 35(12): 2533-2539. |
[15] | 张毅,姜青山. 基于分层TOPSIS法的预警机效能评估[J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1051-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||