Journal of Systems Engineering and Electronics ›› 2009, Vol. 31 ›› Issue (3): 515-517.

• 电子技术 • 上一篇    下一篇

基于曲波变换的自适应图像去噪算法

罗忠亮1,2, 林土胜1   

  1. 1. 华南理工大学电子与信息学院, 广东, 广州, 510641;
    2. 韶关学院电子与通信工程系, 广东, 韶关, 512005
  • 收稿日期:2007-12-03 修回日期:2008-02-05 出版日期:2009-03-20 发布日期:2010-01-03
  • 作者简介:罗忠亮(1973- ),男,讲师,博士研究生,主要研究方向为数字图像处理与分析.E-mail:luozl66@yahoo.com.cn
  • 基金资助:
    国家自然科学基金(60472006);广东省自然科学基金团队研究项目(04205783)资助课题

Algorithm of adaptive image de-noising based on curvelet transform

LUO Zhong-liang1,2, LIN Tu-sheng1   

  1. 1. School of Electronics and Information, South China Univ. of Technology, Guangzhou 510641, China;
    2. Dept. of Electronics and Communication Engineering, Shaoguan Coll., Shaoguan 512005, China
  • Received:2007-12-03 Revised:2008-02-05 Online:2009-03-20 Published:2010-01-03

摘要: 曲波变换是一种新的多尺度变换理论,具有各向异性的特征,可以很好地逼近含线奇异的高维函数。利用曲波变换和经验贝叶斯估计的方法,提出一种新的自适应图像去噪方法,在曲波分解的基础上,由贝叶斯决策理论方法来导出估计法则,从而获得贝叶斯估计值。实验结果表明,与其他几种常用的去噪方法相比,本方法去噪后,图像获得较好的视觉效果,同时客观评价指标明显改进,在较大噪声的情况下更能显示出其优势。

Abstract: Curvelet is a new multiscale transform theory,which has the characteristics of anisotropy.It can approach a high dimensional function containing line singularity better.Based on curvelet decomposition,Bayesis estimation is obtained by the estimate rule derived from Bayesis theory is obtained.A new adaptive method of image de-noising based on the curvelet domain and empirical Bayesis estimation is proposed.The experiments show that compared with the other de-noising methods,the proposed approach can obtain better visual quality and improve objective measurements,which can demonstrate the advantage under the larger noise situation.

中图分类号: