| 1 |
SANKARAN J. The failures of Russian aerospace forces in the Russia–Ukraine war and the future of air power[J]. Journal of Strategic Studies, 2024, 47 (6): 860- 887.
|
| 2 |
YITZHAK R. War in the air: Israel and Jordan in the dogfight[J]. Defence Studies, 2024, 24 (3): 365- 379.
doi: 10.1080/14702436.2024.2346503
|
| 3 |
俞锦涛, 肖兵, 熊家军. 基于拓扑势的网络毁伤最大算法[J]. 系统工程与电子技术, 2023, 45 (9): 2812- 2818.
|
|
YU J T, XIAO B, XIONG J J. Network damage maximization algorithm based on topology potential[J]. Systems Engineering and Electronics, 2023, 45 (9): 2812- 2818.
|
| 4 |
刘德胜. 基于复杂网络分析方法的作战体系评估研究综述[J]. 军事运筹与系统工程, 2020, 34 (3): 66- 73.
|
|
LIU D S. A survey of combat system assessment based on complex network analysis[J]. Military Operations Rsearch and Systems Engineering, 2020, 34 (3): 66- 73.
|
| 5 |
BLOCH F, JACKSON M O, TEBALDI P. Centrality measures in networks[J]. Social Choice and Welfare, 2023, 61 (8): 413- 453.
|
| 6 |
D’SOUZA R M, BERNARDO M D, LIU Y Y. Controlling complex networks with complex nodes[J]. Nature Reviews Physics, 2023, 5 (4): 250- 262.
doi: 10.1038/s42254-023-00566-3
|
| 7 |
LIU Z F, YE J X, ZOU Z N. Closeness centrality on uncertain graphs[J]. ACM Transactions on the Web, 2023, 17 (4) 29.
|
| 8 |
UMUNNAKWE A, SAHU A, NARIMANI M R, et al. Cyber-physical component ranking for risk sensitivity analysis using betweenness centrality[J]. IET Cyber-Physical Systems: Theory & Applications, 2021, 6(3): 139−150.
|
| 9 |
CHEN D B, LU L Y, SHANG M S, et al. Identifying influential nodes in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391 (4): 1777- 1787.
doi: 10.1016/j.physa.2011.09.017
|
| 10 |
LI G S, LI M, WANG J X, et al. United neighborhood closeness centrality and orthology for predicting essential proteins[J]. IEEE/ACM Trans. on Computational Biology and Bioinformatics, 2020, 17 (4): 1451- 1458.
doi: 10.1109/TCBB.2018.2889978
|
| 11 |
DENG Y, WU J, TAN Y J. A fast connected component algorithm based on hub contraction[C]//Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2016.
|
| 12 |
LU L Y, CHEN D B, REN X L, et al. Vital nodes identification in complex networks[J]. Physics Reports, 2016, 650 (9): 1- 63.
|
| 13 |
BOYD J R. A discourse on winning and losing[M]. Alabama: Air University Press, 2018.
|
| 14 |
MENG X Z, XIE C R, LI H, et al. Research on optimization of large-scale heterogeneous combat network based on graph embedding[J]. IEEE Access, 2025, 13: 5773−5784.
|
| 15 |
杨倩, 方艳红, 锁斌. 基于OODA环的作战体系网络重要节点识别方法[J]. 探测与控制学报, 2023, 45 (6): 116- 122.
|
|
YANG Q, FANG Y H, SUO B. The important nodes identification of combat system network based on OODA ring[J]. Journal of Detection & Control, 2023, 45 (6): 116- 122.
|
| 16 |
俞锦涛, 肖兵, 熊家军. 基于效能环的预警情报体系能力评估[J]. 火力与指挥控制, 2022, 47 (2): 32- 36,42.
doi: 10.3969/j.issn.1002-0640.2022.02.006
|
|
YU J T, XIAO B, XIONG J J. Capability evaluation of early warning intelligence system-of-systems based on intelligence effectiveness loop[J]. Fire Control & Command Control, 2022, 47 (2): 32- 36,42.
doi: 10.3969/j.issn.1002-0640.2022.02.006
|
| 17 |
王耀祖, 尚柏林, 宋笔锋, 等. 基于杀伤链的作战体系网络关键节点识别方法[J]. 系统工程与电子技术, 2023, 45(3): 736−744.
|
|
WANG Y Z, SHANG B L, SONG B F, et al. Identification method of key node in operational system-of-systems network based on kill chain[J]. Systems Engineering and Electronics, 2023, 45(3): 736−744.
|
| 18 |
BILTGEN P T. A methodology for capability-based technology evaluation for systems-of-systems[D]. Atlanta: Georgia Institute of Technology, 2007.
|
| 19 |
DUCHEINE P A, SCHMITT M N, OSINGA F P. Targeting: the challenges of modern warfare[M]. Netherlands: Asser Press, 2016.
|
| 20 |
BOYD J R. The essence of winning and losing[EB/OL]. [2024-09-23]. https://slightlyeastofnew.com/wp-content/uploads/2010/03/essence_of_winning_losing.pdf.
|
| 21 |
VALIENTE G. Algorithms on trees and graphs[M]. Berlin: Springer, 2021.
|
| 22 |
BOURITSAS G, FRASCA F, ZAFEIRIOU S, et al. Improving graph neural network expressivity via subgraph isomorphism counting[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2023, 45 (1): 657- 668.
doi: 10.1109/TPAMI.2022.3154319
|
| 23 |
ULLMANN J R. An algorithm for subgraph isomorphism[J]. Journal of Association for Computer Magazine, 1976, 23 (1): 31- 42.
|
| 24 |
CIBEJ U, MIHELIC J. Improvements to Ullmann’s algorithm for the subgraph isomorphism problem[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2015, 29 (7): 1550025.
doi: 10.1142/S0218001415500251
|
| 25 |
JUTTNER A, MADARASI P. VF2++—An improved subgraph isomorphism algorithm[J]. Discrete Applied Mathematics, 2018, 242 (6): 69- 81.
|
| 26 |
CARLETTI V, FOGGIA P, SAGGESE A, et al. Introducing VF3: a new algorithm for subgraph isomorphism[C]//Proc. of the Graph-based Representations in Pattern Recognition, 2017.
|
| 27 |
SOLNON C. AllDifferent-based filtering for subgraph isomorphism[J]. Artificial Intelligence, 2010, 174 (12): 850- 864.
|
| 28 |
陆军, 张瑶, 乔永杰. 不确定性打击链的闭环时间表征和评估[J]. 中国科学·信息科学, 2017, 47 (2): 207- 220.
doi: 10.1360/N112016-00157
|
|
LU J, ZHANG Y, QIAO Y J. Representation and evaluation of the closed-loop time of the kill chain under uncertainties[J]. SCIENTIA SINICA Informationis, 2017, 47 (2): 207- 220.
doi: 10.1360/N112016-00157
|
| 29 |
LI J C, ZHAO D L, JIANG J, et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51 (2): 696- 704.
doi: 10.1109/TCYB.2019.2914869
|
| 30 |
JACKIE C, DIANNE P, DUFFIELD C , et al. The Delphi method?[J]. Nursing Research, 1997, 46 (2): 116- 118.
doi: 10.1097/00006199-199703000-00010
|