

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (10): 3389-3400.doi: 10.12305/j.issn.1001-506X.2025.10.23
• 系统工程 • 上一篇
陈成1, 张祥瑞1,2,*, 杨中源1, 周华伟1, 何秦1, 韩灿1
收稿日期:2024-08-23
出版日期:2025-10-25
发布日期:2025-10-23
通讯作者:
张祥瑞
作者简介:陈 成(1994—),男,工程师,博士,主要研究方向为舰船装备体系设计、舰船总体技术与系统工程Cheng CHEN1, Xiangrui ZHANG1,2,*, Zhongyuan YANG1, Huawei ZHOU1, Qin HE1, Can HAN1
Received:2024-08-23
Online:2025-10-25
Published:2025-10-23
Contact:
Xiangrui ZHANG
摘要:
舰船装备正向设计需求分析存在系统性、完备性、合理性不足,与实战化需求匹配度不高等问题。根据基于模型的系统工程思想建立基于国防部体系结构框架(Department of Defense Architecture Framework,DoDAF)的舰船实战化需求建模与分析方法。首先,定义舰船实战化需求的概念内涵,围绕舰船实战化需求分析目的,对DoDAF进行适应性剪裁,建立面向舰船实战化需求分析的DoDAF建模方法。然后,构建可拓展的舰船设计领域本体模型,建立以活动为中心的舰船实战化需求映射分解和结构化提取方法。示例分析表明,所提方法补充完善了实际作战场景下的舰船实战化需求,有利于提高舰船设计要求与舰船实战化需求的匹配度。所提方法可为舰船装备正向设计需求分析提供方法论指导,对于从需求设计源头提升舰船装备正向设计水平具有重要意义。
中图分类号:
陈成, 张祥瑞, 杨中源, 周华伟, 何秦, 韩灿. 基于DoDAF的舰船实战化需求建模与分析方法[J]. 系统工程与电子技术, 2025, 47(10): 3389-3400.
Cheng CHEN, Xiangrui ZHANG, Zhongyuan YANG, Huawei ZHOU, Qin HE, Can HAN. Modeling and analysis approach for actual combat requirements of warships based on DoDAF[J]. Systems Engineering and Electronics, 2025, 47(10): 3389-3400.
表2
DoDAF数据词典"
| DM2 术语 | DoDAF模型 | |||||||||||||||||
| OV-1 | OV-2 | OV-3 | OV-4 | OV-5a | OV-5b | OV-6a | OV-6b | OV-6c | SV-1 | SV-4 | SV-5a | SV-5b | SV-10a | SV-10b | SV-10c | CV-1 | CV-2 | |
| 活动 | — | n | n | — | n | n | o | n | n | n | n | n | o | o | n | n | n | n |
| 协定 | — | — | — | — | — | o | o | o | o | — | — | — | — | — | — | — | — | — |
| 能力 | — | — | — | — | — | — | — | — | — | — | — | — | o | — | — | — | n | n |
| 条件 | — | o | o | — | — | o | o | o | o | o | o | o | o | o | o | o | n | n |
| 数据 | — | — | — | — | — | — | — | — | — | — | n | — | — | o | o | o | — | — |
| 预期效果 | — | — | — | — | — | — | o | — | — | — | — | — | — | o | — | — | n | n |
| 指南 | df | df | df | df | df | df | df | df | df | df | df | df | df | df | df | df | df | df |
| 信息 | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo |
| 组织 | — | o | o | o | — | o | o | o | o | o | — | — | — | — | — | — | — | — |
| 执行者 | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo |
| 资源 | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo |
| 规则 | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo | dfo |
| 标准 | df | df | df | df | df | df | df | df | df | df | df | df | df | df | df | df | df | df |
| 系统 | — | — | — | — | — | — | — | — | — | n | o | — | n | n | n | n | — | o |
| 功能 | — | — | — | — | — | — | — | — | — | n | o | — | n | n | n | n | — | o |
表3
舰船实战化需求分析的DoDAF模型集"
| 舰船实战化需求适应DM2的形式化描述 | DoDAF模型 | |
| 使用需求 | 活动(任务,流程) | OV-1, OV-2, OV-3, OV-5a, OV-5b, OV-6a, OV-6b, OV-6c, SV-5a, SV-5b, CV-6 |
| 组织(主体) | OV-2, OV-4, OV-5b, OV-6a, OV-6b, OV-6c, CV-5 | |
| 资源 | OV-2, OV-3, OV-5b | |
| 条件 | OV-5b, OV-6a, OV-6b, OV-6c | |
| 规则 | OV-5b, OV-6a, OV-6b, OV-6c | |
| 预期效果 | CV-1, CV-2, OV-5b, OV-6a | |
| 系统需求 | 功能(活动,逻辑) | SV-1a, SV-1b, SV-4a, SV-4b, SV-5a, SV-10a, SV-10b, SV-10c |
| 系统 | SV-1a, SV-1b, SV-4b, SV-5b, SV-10a, SV-10b, SV-10c | |
| 资源 | SV-1b, SV-4b | |
| 条件 | SV-4b, SV-10a, SV-10b, SV-10c | |
| 规则 | SV-4b, SV-10a, SV-10b, SV-10c | |
| 预期效果 | CV-1, CV-2, SV-4b, SV-10a | |
表4
系留与解系留节点派生的系统技术要求"
| 序号 | 系统技术要求 | 需求维度 | 需求来源SV | 需求来源OV |
| STR1 | 系留索具存放位置与舰载机停机位间的距离不得超过X m | 人员-舰体平台 | SV-4b A3 | OV-5b A2 |
| STR2 | 系留索具的类型和数量应与舰载机的类型和数量相匹配 | 舰载装备-舰载系统 | SV-4b A3 | OV-5b A2 |
| STR3 | 系留索具的接口形式、数量和位置应与舰载机相适配 | 舰载装备-舰载系统 | SV-4b A3 | OV-5b A2 |
| STR4 | 系留索具的最小破断载荷不得小于X kN | 舰载装备-舰载系统 | SV-4b A3 | OV-5b A2 |
| STR5 | 系留索具的长度和重量应满足人因要求 | 人员-舰载系统 | SV-4b A3 | OV-5b A2 |
| STR6 | 极端恶劣环境下舰载机的系留方案应满足安全要求 | 舰载装备-舰载系统 | SV-4b A3 | OV-5b A2 |
| 1 | 徐青. 舰船总体设计流程分析[J]. 中国舰船研究, 2012, 7 (5): 1- 7. |
| XU Q. Analysis of the overall warship design process[J]. Chinese Journal of Ship Research, 2012, 7 (5): 1- 7. | |
| 2 | 陈成, 黄蔚, 张祥瑞, 等. 一种船舶设计中的需求分析系统及方法[P]. 中国: CN202311385712.5, 2023-12-26. |
| CHEN C, HUANG W, ZHANG X R, et al. A system and method for analyzing requirements in ship design[P]. China: CN202311385712.5, 2023-12-26. | |
| 3 | 夏凯, 张文金, 叶远璟. 舰船总体需求工程应用技术研究[C]//数字化造船学术交流会议, 2019: 41−44. |
| XIA K, ZHANG W J, YE Y J. Research on engineering application technology of overall requirements for ships[C]//Proc. of the Digital Shipbuilding Academic Exchange Conference, 2019: 41−44. | |
| 4 | 李海涛, 刁爱民. 从舰船总体和系统性能的关系论其总体设计问题[J]. 海军工程大学学报(综合版), 2015, 12 (4): 38- 42. |
| LI H T, DIAO A M. Study on warship design in terms of relationship between its overall performance and system performance[J]. Journal of Naval University of Engineering, 2015, 12 (4): 38- 42. | |
| 5 | 贾晨曦, 王林峰. 国内基于模型的系统工程面临的挑战及发展建议[J]. 系统科学学报, 2016, 24 (4): 100- 104. |
| JIA C X, WANG L F. Challenges and development suggestions of the model based systems engineering in China[J]. Journal of Systems Science, 2016, 24 (4): 100- 104. | |
| 6 | 焦洪臣, 雷勇, 张宏宇, 等. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43 (9): 2516- 2525. |
| JIAO H C, LEI Y, ZHANG H Y, et al. Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43 (9): 2516- 2525. | |
| 7 | 黄冉, 彭祺擘, 武新峰, 等. 基于DoDAF的载人登月体系结构建模[J]. 系统工程与电子技术, 2023, 45 (7): 2131- 2137. |
| HUANG R, PENG Q B, WU X F, et al. Architecture modeling for manned lunar landing based on DoDAF[J]. Systems Engineering and Electronics, 2023, 45 (7): 2131- 2137. | |
| 8 |
张绍杰, 李正强, 海晓航, 等. 基于MBSE的民用飞机安全关键系统设计[J]. 中国科学: 技术科学, 2018, 48 (3): 299- 311.
doi: 10.1360/N092017-00205 |
|
ZHAGN S J, LI Z Q, HAI X H, et al. Safety critical systems design for civil aircrafts by model based systems engineering[J]. SCIENTIA SINICA Technologica, 2018, 48 (3): 299- 311.
doi: 10.1360/N092017-00205 |
|
| 9 | 梅芊, 黄丹, 卢艺. 基于MBSE的民用飞机功能架构设计方法[J]. 北京航空航天大学学报, 2019, 45 (5): 1042- 1051. |
| MEI Q, HUANG D, LU Y. Design method of civil aircraft functional architecture based on MBSE[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (5): 1042- 1051. | |
| 10 |
毛志威, 屈展文, 张彤, 等. 基于MBSE的民机审定试飞场景设计[J]. 系统工程与电子技术, 2020, 42 (8): 1768- 1775.
doi: 10.3969/j.issn.1001-506X.2020.08.17 |
|
MAO Z W, QU Z W, ZHANG T, et al. Design of civil aircraft certification test flight scenario based on MBSE[J]. Systems Engineering and Electronics, 2020, 42 (8): 1768- 1775.
doi: 10.3969/j.issn.1001-506X.2020.08.17 |
|
| 11 | 王雨农, 毕文豪, 张安, 等. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43 (12): 3579- 3585. |
| WANG Y L, BI W H, ZHANG A, et al. DoDAF-based civil aircraft MBSE development method[J]. Systems Engineering and Electronics, 2021, 43 (12): 3579- 3585. | |
| 12 | 范秋岑, 毕文豪, 张安, 等. 民用飞机高度控制系统MBSE建模方法[J]. 系统工程与电子技术, 2022, 44 (1): 164- 171. |
| FAN Q C, BI W H, ZHANG A, et al. MBSE modeling method of civil aircraft altitude control system[J]. Systems Engineering and Electronics, 2022, 44 (1): 164- 171. | |
| 13 | 张世聪, 陈波, 张晓晋, 等. 基于MBSE的动车组设计方法研究及应用[J]. 中国铁道科学, 2018, 39 (2): 94- 102. |
| ZHANG S C, CHEN B, ZHANG X J, et al. Research and application of design method of electric multiple unit based on MBSE[J]. China Railway Science, 2018, 39 (2): 94- 102. | |
| 14 | 陈娟, 周广明, 李欣桐, 等. 基于MBSE的综合传动装置需求分析[J]. 兵工学报, 2022, 43 (S1): 11- 20. |
| CHEN J, ZHOU G L, LI X T, et al. MBSE-based requirement analysis of transmission system[J]. Acta Armamentarii, 2022, 43 (S1): 11- 20. | |
| 15 | 朱俊志, 杨珏, 万蕾, 等. MBSE在核电设计中的初步应用研究[J]. 核动力工程, 2022, 43 (1): 163- 168. |
| ZHU J Z, YANG J, WAN L, et al. Research on preliminary application of MBSE in nuclear power design[J]. Nuclear Power Engineering, 2022, 43 (1): 163- 168. | |
| 16 | LI X T, HU X G, XIAO J, et al. Research on modeling method of aeronautical weapon flight control system based on Harmony-SE[C]//Proc. of the IEEE 16th Conference on Industrial Electronics and Applications, 2021: 2064−2069. |
| 17 | YANG Z J, DU H C, LIU Y, et al. Use the Harmony-SE approach to extend the advantages of MBSE[C]//Proc. of the IEEE 16th Conference on Industrial Electronics and Applications, 2021: 223−227. |
| 18 |
CUI Z Y, LUO M Q, ZHANG C, et al. MBSE for civil aircraft scaled demonstrator requirement analysis and architecting[J]. IEEE Access, 2022, 10, 43112- 43128.
doi: 10.1109/ACCESS.2022.3168837 |
| 19 |
LIU J, LIU J H, ZHUANG C B, et al. Construction method of shop-floor digital twin based on MBSE[J]. Journal of Manufacturing Systems, 2021, 60, 93- 118.
doi: 10.1016/j.jmsy.2021.05.004 |
| 20 | BONNET S, VOIRIN J L, EXERTIER D, et al. Not (strictly) relying on SysML for MBSE: language, tooling and development perspectives: the Arcadia/Capella rationale[C]//Proc. of the IEEE Annual Systems Conference, 2016. |
| 21 | PONSARD C, RAMON V. Applying and extending FEMMP to select an adequate MBSE methodology[C]//Proc. of the International Conference on Software Technologies, 2022: 508−515. |
| 22 | JACOBS S, WENGROWICZ N, DORI D. Defining object-process methodology in web ontology language for semantic mediation[C]//Proc. of the IEEE International Conference on Software Science, Technology and Engineering, 2014: 87−95. |
| 23 | JACOBS S, WENGROWICZ N, DORI D. Exporting object-process methodology system models to the semantic web[C]//Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2014: 1014−1019. |
| 24 | CHEN C, ZHANG X R, CHANG X, et al. A model-based requirements analysis approach for ship-equipment suitability using Department of Defense Architecture Framework[C]//Proc. of the 33rd International Ocean and Polar Engineering Conference, 2023: 3708−3714. |
| 25 |
PIASZCZYK C. Model based systems engineering with Department of Defense Architectural Framework[J]. Systems Engineering, 2011, 14 (3): 305- 326.
doi: 10.1002/sys.20180 |
| 26 | U. S. Department of Defense. The DoDAF architecture framework version 2.02[R]. Washington D. C.: U. S. Department of Defense, 2010. |
| 27 | 卫继承, 张娟, 杨文雅, 等. 基于DoDAF的低慢小飞行器综合处置体系架构设计[J]. 系统工程与电子技术, 2024, 46 (1): 162- 172. |
| WEI J C, ZHANG J, YANG W Y, et al. Design for integrated disposal system architecture of low-slow-small aerocraft based on DoDAF[J]. Systems Engineering and Electronics, 2024, 46 (1): 162- 172. | |
| 28 | 贾宝惠, 杨丽晨, 王玉鑫. 民用飞机持续安全性评估体系架构设计与分析[J]. 航空工程进展, 2023, 14 (1): 47- 56. |
| JIA B H, YANG L C, WANG Y X, et al. Design and analysis of ongoing safety assessment system architecture of civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2023, 14 (1): 47- 56. | |
| 29 | 潘星, 张振宇, 张曼丽, 等. 基于SoSE的装备体系RMS论证方法研究[J]. 系统工程与电子技术, 2019, 41 (8): 1771- 1779. |
| PAN X, ZHANG Z Y, ZHANG M L, et al. Research on RMS demonstration method of equipment SoS based on SoSE[J]. Systems Engineering and Electronics, 2019, 41 (8): 1771- 1779. | |
| 30 | 李硕, 方芳, 拜丽萍. 美军信息系统互操作性研究[J]. 火力与指挥控制, 2016, 41 (9): 6- 9. |
| LI S, FANG F, BAI L P. Research on military information system interoperability[J]. Fire Control & Command Control, 2016, 41 (9): 6- 9. | |
| 31 | 罗爱民, 黄力, 罗雪山. 以活动为中心的体系结构设计方法研究[J]. 系统工程与电子技术, 2008, 30 (3): 499- 502. |
| LUO A M, HUANG L, LUO X S. Research on activity-centric architecture methodology[J]. Systems Engineering and Electronics, 2008, 30 (3): 499- 502. | |
| 32 | 郝翎钧, 谢君, 吴鹏飞. 基于核心体系结构数据的体系结构设计方法[J]. 电光与控制, 2019, 26 (8): 111- 115. |
| HAO L J, XIE J, WU P F. An architecture design method based on core architecture data[J]. Electronics Optics & Control, 2019, 26 (8): 111- 115. | |
| 33 |
TAO Z G, LUO Y F, CHEN C X, et al. Enterprise application architecture development based on DoDAF and TOGAF[J]. Enterprise Information Systems, 2017, 11 (5): 627- 651.
doi: 10.1080/17517575.2015.1068374 |
| 34 |
KIM C H, WESTON R H, HODGSON A, et al. The complementary use of IDEF and UML modelling approaches[J]. Computers in Industry, 2003, 50 (1): 35- 56.
doi: 10.1016/S0166-3615(02)00145-8 |
| [1] | 孟庆春, 杜非, 王彪, 张芹, 韩汶, 徐畅. 基于MBSE的危化品车辆监控预警系统设计[J]. 系统工程与电子技术, 2025, 47(7): 2224-2236. |
| [2] | 李特, 郭强, 战鹏. 基于MBSE的异构探测器系统架构设计方法[J]. 系统工程与电子技术, 2025, 47(6): 1930-1940. |
| [3] | 崔馨方, 陈祥文. MBSE在载人航天在轨物资补给任务中的应用[J]. 系统工程与电子技术, 2025, 47(5): 1551-1560. |
| [4] | 王乾, 郑党党, 佟瑞庭, 韩冰, 杨小辉. 基于MBSE的民机飞行控制系统架构设计[J]. 系统工程与电子技术, 2024, 46(9): 3050-3059. |
| [5] | 陈志兵, 邬恒, 罗战虎, 王建国. 基于MBSE的对流层飞艇运行概念研究[J]. 系统工程与电子技术, 2024, 46(3): 1004-1012. |
| [6] | 董梦如, 王国新, 鲁金直, 马君达, 阎艳. 基于WordCloud技术的MBSE发展态势研究[J]. 系统工程与电子技术, 2024, 46(2): 534-548. |
| [7] | 苗学问, 董骁雄, 钱征文, 胡杨, 李牧东. 基于DoDAF的航空装备智能保障系统体系结构建模[J]. 系统工程与电子技术, 2024, 46(2): 640-648. |
| [8] | 戚亚群, 金平, 彭祺擘, 张海联, 蔡国飙. 基于模型的推进系统故障识别及建模方法[J]. 系统工程与电子技术, 2024, 46(12): 4062-4073. |
| [9] | 朱景璐, 朱野, 李立, 郑轲. 基于MBSE的卫星能源系统设计与验证[J]. 系统工程与电子技术, 2024, 46(11): 3807-3819. |
| [10] | 田昆效, 粟华, 龙永松, 杨予成, 龚春林. 基于需求-功能-结构关系矩阵的导弹模块划分方法[J]. 系统工程与电子技术, 2024, 46(10): 3398-3406. |
| [11] | 罗睿, 黄今辉, 王双双, 孔德照. 复杂软件系统双向耦合论证设计方法[J]. 系统工程与电子技术, 2024, 46(10): 3451-3461. |
| [12] | 任浩亮, 张建超, 程会川. 基于SysML的武器装备体系能力需求建模分析方法[J]. 系统工程与电子技术, 2023, 45(9): 2843-2851. |
| [13] | 黄冉, 彭祺擘, 武新峰, 倪庆. 基于DoDAF的载人登月体系结构建模[J]. 系统工程与电子技术, 2023, 45(7): 2131-2137. |
| [14] | 高金艳, 汪路元, 潘忠石, 王虎妹. 火星维护与管理装置的MBSE架构建模[J]. 系统工程与电子技术, 2023, 45(5): 1441-1450. |
| [15] | 武新峰, 彭祺擘, 黄冉, 李静琳. 基于MBSE的运载火箭上升段逃逸救生策略[J]. 系统工程与电子技术, 2023, 45(4): 1121-1126. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||