系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2581-2599.doi: 10.12305/j.issn.1001-506X.2025.08.16
• 系统工程 • 上一篇
王纪凯1(), 豆亚杰1,*, 李婧2, 董奕君3, 姜江1, 谭跃进1
收稿日期:
2023-05-30
出版日期:
2025-08-25
发布日期:
2025-09-04
通讯作者:
豆亚杰
E-mail:jkwang@nudt.edu.cn
作者简介:
王纪凯(2000—),男,博士研究生,主要研究方向为计算智能与优化决策基金资助:
Jikai WANG1(), Yajie DOU1,*, Jing LI2, Yijun DONG3, Jiang JIANG1, Yuejin TAN1
Received:
2023-05-30
Online:
2025-08-25
Published:
2025-09-04
Contact:
Yajie DOU
E-mail:jkwang@nudt.edu.cn
摘要:
智能化是未来军事发展的重要方向,而智能决策作为智能化的重要手段,深刻影响着军队的作战体系建设以及装备武器体系发展规划。首先,给出智能决策的技术内涵定义,从机器学习、运筹优化、数据/知识驱动、系统支持的视角进行归纳总结,进而阐述军事体系工程的定义与结构,梳理出军事体系工程领域的智能决策流程,对当前智能决策在军事体系需求、体系设计、体系建模、体系评估、体系管理等环节的应用现状进行总结。最后给出智能决策技术在军事体系工程应用的未来展望,以期为军事智能化发展工作提供一定的参考价值。
中图分类号:
王纪凯, 豆亚杰, 李婧, 董奕君, 姜江, 谭跃进. 智能决策在军事体系工程的研究综述[J]. 系统工程与电子技术, 2025, 47(8): 2581-2599.
Jikai WANG, Yajie DOU, Jing LI, Yijun DONG, Jiang JIANG, Yuejin TAN. Review on intelligent decision in the military system of systems engineering research[J]. Systems Engineering and Electronics, 2025, 47(8): 2581-2599.
表4
ID文献归纳"
决策分类 | 文献 | 创新点 | 应用技术 |
机器学习 | 文献[ | 机器学习系统需求建模和决策选择框架,训练数据与算法支持 | ML |
文献[ | 设计基于确定性深度确定性策略梯度算法的决策网络,探索认知雷达与智能干扰机的竞争关系 | DRL | |
文献[ | 设计两级决策树方法,确定不同工业流程在分布式资源平台(distributed resource platforms,DRPs)中的参与能力,并考虑客户各种特性和能力 | DT | |
文献[ | 关联规则学习和加权网络分析来分析每个决策结果的特征类别权重,应用加权朴素贝叶斯模型分配不同的权重 | DTM | |
文献[ | 提出一种ML驱动的决策方法,用于求解数据不完整和大量决策属性的大规模问题 | SVM | |
运筹优化 | 文献[ | 提出模糊行为投资组合决策模型,求解组合收益的可能性均值 | 模糊理论 |
文献[ | 语言直觉模糊数引入到损失函数中,提出基于单一优化模型的阈值确定方法来导出三支决策(three-way decision,3WD) | 3WD | |
文献[ | 构建不完全信息条件下基于专家信任网络的多属性群决策方法 | 专家信任网络 | |
文献[ | 改进算子增强非支配排序遗传算法Ⅲ(non-dominated sorting genetic algorithm Ⅲ,NSGA-Ⅲ)获得高质量解集和跳出局部最优解的能力,求出Pareto最优解集 | NSGA-Ⅲ、多准则妥协解排序法 (višekriterijumsko kompromisno rangiranje,VOKOR) | |
数据&知识驱动 | 文献[ | 通过实现定量决策模型和蒙特卡罗仿真,提出数据驱动的可靠性维修过程,BIM和GIS集成以支持RCM数据的获取和更新 | 数据驱动 |
文献[ | 提出多模态知识表示方法,构建知识驱动的DSS | 知识驱动 | |
文献[ | 梳理知识与数据协同驱动决策方法,从知识与数据的架构级协同、算法级协同两个层面对典型方法进行分类 | 知识数据协同驱动 | |
系统支持 | 文献[ | 提出一种基于数据驱动技术(case based reasoning,CBR)和模型驱动技术(rule based reasoning,RBR)的IDSS方法,用于环境系统的控制、监督和决策支持 | IDSS |
文献[ | 提出一种用于自适应交易策略的混合DSS,将基于规则的系统与DRL相结合,通过学习人类专业知识进行自我改进 | 规则推理和DRL技术 |
表5
决策方法分析"
决策方法 | 方法特点 | 适用情景 | 应用情况 |
TOPSIS | 优劣解距离法,采用与正理想解相对值来排序, 计算简单直观,强调利益属性 | 评价对象得分,其各个指标值已知,多属性决策 | 军事资源配置[ 体系设计[ |
ELECTRE I、II、Ⅲ | 淘汰选择法,级别高于关系 | 针对属性权重已知、属性值模糊,多属性决策 | 体系评估[ |
TODIM | 基于前景理论,考虑决策心理 | 主观交互性,风险分析,多准则决策 | 体系结构[ |
VIKOR | 折衷妥协解法,排序稳定性强,可信度高 | 决策偏好信息不确定,测量单位不同,多准则决策 | 体系评估[ |
3WD | 三支决策,符合人类认知,回避不确定信息 | 应用范围广,多属性决策 | 体系评估[ |
PROMETHEE | 无需评价指标无量纲和规范化处理, 评价结果客观,科学 | 快速排序需求,软件辅助,多属性决策 | 军事资源配置[ |
表6
ID在军事SoSE领域的应用"
体系流程 | 文献 | 应用方法 | 具体问题 |
体系需求 | 文献[ | 知识管理与自动化决策支持系统 | 需求管理与能力开发 |
文献[ | 系统工程“V”模型,用户故事概念 | 作战体系能力需求开发 | |
文献[ | 元模型,需求本体构建方法 | 需求开发与验证 | |
文献[ | 概念演示,信息系统 | 军事需求论证 | |
文献[ | 粒子群算法,基于模糊偏好的多属性决策 | 兵力需求优化 | |
文献[ | 启发式算法,D-S证据推断方法 | 需求冲突检测 | |
文献[ | DRL技术,多目标优化算法 | 作战概念需求分析 | |
体系设计 | 文献[ | Actor-Critic模型,强化学习,马尔科夫决策过程 | 无人体系智能体 |
文献[ | 作战辅助决策构建,体系流程, | 作战系统辅助 | |
文献[ | 系统架构设计 | 作战系统需求与设计 | |
文献[ | 物联网系统辅助决策,不确定信息处理 | 作战模拟决策 | |
文献[ | 灰色熵DEMATEL-VIKOR,双边匹配模型 | 复杂装备协同设计 | |
文献[ | 灰靶决策,图示评审技术,贝叶斯决策 | 作战体系装备组合设计 | |
体系建模 | 文献[ | DoDAF多视图建模与SOA结合,组合决策 | 作战体系建模 |
文献[ | 依赖网络模型,体系重心度量方法 | 网络信息体系建模 | |
文献[ | 属性映射关系,人机协同 | 作战体系结构设计 | |
文献[ | 适变价值生产单元模型,有机融合的云流化指控 | 指控架构设计 | |
文献[ | 博弈对抗、多视图建模 | 海上搜救体系建模 | |
文献[ | DoDAF与SysML,作战环 | 无人作战体系建模 | |
文献[ | DL技术,认知决策模型 | 无人集群作战建模 | |
体系评估 | 文献[ | GERT | 装备体系效能评估 |
文献[ | 基于预聚类主动半监督学习的评估方法 | 作战体系决策评估 | |
文献[ | 直觉模糊集,加权影响非线性测量系统 | 装备体系效能评估 | |
文献[ | 模糊贝叶斯网络 | 装备体系贡献率评估 | |
文献[ | 作战时序网络 | 装备体系能力评估 | |
文献[ | 功能依赖网络 | 体系韧性量化评估 | |
文献[ | 复杂网络理论,基于拓扑结构的体系贡献率评估方法 | 体系贡献率评估 | |
文献[ | 军事后勤网络规划系统,Markov-Bootstrap方法 | 后勤保障评估 | |
体系管理 | 文献[ | 自适应动态规划优化目标,梯度信息优化奖励函数 | 武器-目标分配 |
文献[ | 多属性对策间资源分配博弈论模型,多迭代分析 | 资源优化分配 | |
文献[ | 资源最优共享模型,确定性与随机性对比 | 资源优化分配 | |
文献[ | 组合决策分析,专家意见和成本效益分析,智能算法 | 武器规划问题 |
103 | JIANG J, JIN Q C, XU X M, et al. Exploration of national defense science and technology system project in the intelligent era[J]. Systems Engineering and Electronics, 2022, 44 (6): 1880- 1888. |
104 | FAN Y P, GUO Q S, ZHAO K. Capabilities-based requirement demonstration method for weapon system-of-systems[C]//Proc. of the IEEE 17th International Conference on Intelligent Transportation Systems, 2014: 206−210. |
105 |
HE H, WANG W P, ZHU Y F, et al. An operation planning generation and optimization method for the new intelligent combat SoS[J]. IEEE Access, 2019, 7, 156834- 156847.
doi: 10.1109/ACCESS.2019.2949989 |
106 |
HUANG Q, ZHANG Y S, ZHANG B Z, et al. Emerging SEM equipment system combat capability assessment method[J]. Procedia Computer Science, 2021, 183, 545- 550.
doi: 10.1016/j.procs.2021.02.095 |
107 | ZHANG J R, FANG Z G, DONG W J. Portfolios selection decision model for equipment system of systems considering development costs[J]. Expert Systems with Applications, 2024, 246, 123235. |
108 |
HE H, WANG W P, ZHU Y F, et al. Function chain-based mission planning method for hybrid combat SoS[J]. IEEE Access, 2019, 7, 100453- 100466.
doi: 10.1109/ACCESS.2019.2928524 |
109 |
CHEN L, KOU Y X, LI Z W, et al. Empirical research on complex networks modeling of combat SoS based on data from real war-game, part I: statistical characteristics[J]. Physica A: Statistical Mechanics and its Applications, 2018, 490, 754- 773.
doi: 10.1016/j.physa.2017.08.102 |
110 | MA J. Multi-attribute utility theory based k-means clustering applications[M]. Hershey: IGI Global Scientific Publishing, 2017. |
111 | LI Z W, ZHOU D Y, ZHAO X Z, et al. Method for air combat formation optimization with uncertain information[C]//Proc. of the 2nd Advanced Information Technology, Electronic and Automation Control Conference, 2017: 1846−1854. |
112 | SOMASUNDARAM J, DIECIDUE E. Regret theory and risk attitudes[J]. Journal of Risk and Uncertainty, 2017, 55 (2): 147- 175. |
113 |
LIU Y T, PAN B H, ZHANG Z L, et al. Evaluation of design method for highway adjacent tunnel and exit connection section length based on entropy method[J]. Entropy, 2022, 24 (12): 1794.
doi: 10.3390/e24121794 |
114 |
XIAO Y L, ZOU C Z, CHI H T, et al. Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis[J]. Energy, 2023, 267, 126503.
doi: 10.1016/j.energy.2022.126503 |
115 |
NASUTION S M, HUSNI E, KUSPRIYANTO K, et al. Personalized route recommendation using F-AHP-Express[J]. Sustainability, 2022, 14 (17): 10831.
doi: 10.3390/su141710831 |
116 |
QIN J D, WANG D, LIANG Y Y. Social network-driven bi-level minimum cost consensus model for large-scale group decision-making: a perspective of structural holes[J]. Information Sciences, 2023, 649, 119678.
doi: 10.1016/j.ins.2023.119678 |
117 |
HAN X R, ZHAN J M, BAO Y K, et al. Three-way group consensus method based on probabilistic linguistic preference relations with acceptable inconsistency[J]. Information Fusion, 2024, 103, 102100.
doi: 10.1016/j.inffus.2023.102100 |
118 |
TAN J J, WANG Y M, CHU J F. A consensus method in social network large-scale group decision making with interval information[J]. Expert Systems with Applications, 2024, 237, 121560.
doi: 10.1016/j.eswa.2023.121560 |
119 | FEI L G, FENG Y Q, WANG H L. Modeling heterogeneous multi-attribute emergency decision-making with dempster-shafer theory[J]. Computers & Industrial Engineering, 2021, 161, 107633. |
120 | AKGUN I, ERDAL H. Solving an ammunition distribution network design problem using multi-objective mathematical modeling, combined AHP-TOPSIS, and GIS[J]. Computers & Industrial Engineering, 2019, 129, 512- 528. |
121 | ZHANG J, ZHANG Z H, LI X D, et al. Military transport capacity evaluation of ports using entropy weight and TOPSIS[J]. Journal of Tsinghua University (Science and Technology), 2018, 58 (5): 494- 499. |
122 |
CHEN C, ZHANG X R, WANG G, et al. A hybrid multi-criteria decision-making framework for ship-equipment suitability evaluation using improved ISM, AHP, and fuzzy TOPSIS methods[J]. Journal of Marine Science and Engineering, 2023, 11 (3): 607.
doi: 10.3390/jmse11030607 |
123 |
ALMEIDA I D P, ARAUJO I P D A, COSTA A P D A, et al. A multicriteria decision-making approach to classify military bases for the Brazilian Navy[J]. Procedia Computer Science, 2022, 199, 79- 86.
doi: 10.1016/j.procs.2022.01.198 |
124 | RIBEIRO L S, PASSOS A C, TEIXEIRA M G. Selection of communication technologies in the Brazilian army using AHP, TODIM and sapiens software[J]. Production, 2012, 22, 132- 141. |
125 |
KOZLOV V, NOREK T. Towards objective multi-criteria drone evaluation based on VIKOR and COMET methods[J]. Procedia Computer Science, 2021, 192, 4522- 4531.
doi: 10.1016/j.procs.2021.09.230 |
126 |
GAO Y, LI D S, ZHONG H. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy multi-attribute decision making environment[J]. Engineering Applications of Artificial Intelligence, 2020, 87, 103276.
doi: 10.1016/j.engappai.2019.103276 |
1 |
GAMS M, GU I Y H, HARMA A, et al. Artificial intelligence and ambient intelligence[J]. Journal of Ambient Intelligence and Smart Environments, 2019, 11 (1): 71- 86.
doi: 10.3233/AIS-180508 |
2 |
FAWZY D, MOUSSA S M, BADR N L. The internet of things and architectures of big data analytics: challenges of intersection at different domains[J]. IEEE Access, 2022, 10, 4969- 4992.
doi: 10.1109/ACCESS.2022.3140409 |
3 | ZHANG N, ZHU X B, GOU Y H. The role of artificial intelligence and autonomous systems in the decision-making center of the US mosaic war[C]//Proc. of the International Conference on Intelligent Computing and Human-Computer Interaction, 2020: 21−24. |
4 |
HOROWITZ M C, KAHN L, MAHONEY C. The future of military applications of artificial intelligence: a role for confidence-building measures?[J]. Orbis, 2020, 64 (4): 528- 543.
doi: 10.1016/j.orbis.2020.08.003 |
5 |
LIAO L H, QUAN L R, YANG C, et al. Knowledge synthesis of intelligent decision techniques applications in the AECO industry[J]. Automation in Construction, 2022, 140, 104304.
doi: 10.1016/j.autcon.2022.104304 |
6 | GAO Y, LI D S. Consensus evaluation method of multi-ground-target threat for unmanned aerial vehicle swarm based on heterogeneous group decision making[J]. Computers & Electrical Engineering, 2019, 74, 223- 232. |
7 |
CHEN Z Y, DOU Y J, XU X Q, et al. Service-oriented weapon systems of system portfolio selection method[J]. Journal of Systems Engineering and Electronics, 2020, 31 (3): 551- 566.
doi: 10.23919/JSEE.2020.000034 |
8 |
RAMIREZ-ATENCIA C, RODRIGUEZ-FERNANFEZ V, CAMACHO D. A revision on multi-criteria decision making methods for multi-UAV mission planning support[J]. Expert Systems with Applications, 2020, 160, 113708.
doi: 10.1016/j.eswa.2020.113708 |
9 |
BALLETTO G, LADU M, MILESI A, et al. Walkable city and military enclaves: analysis and decision-making approach to support the proximity connection in urban regeneration[J]. Sustainability, 2022, 14 (1): 457.
doi: 10.3390/su14010457 |
10 |
GUO J, LI Z J, KEYSER T. A Bayesian approach for integrating multilevel priors and data for aerospace system reliability assessment[J]. Chinese Journal of Aeronautics, 2018, 31 (1): 41- 53.
doi: 10.1016/j.cja.2017.08.020 |
11 | ZHANG Y C, SUN X, CHEN L L, et al. Research on system of systems complexity and decision making[C]//Proc. of the Asian Simulation Conference, 2012: 10−18. |
12 |
LIU Q, LENG J W, YAN D X, et al. Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system[J]. Journal of Manufacturing Systems, 2021, 58, 52- 64.
doi: 10.1016/j.jmsy.2020.04.012 |
127 |
SENNAROGLU B, CELEBI G V. A military airport location selection by AHP integrated PROMETHEE and VIKOR methods[J]. Transportation Research Part D: Transport and Environment, 2018, 59, 160- 173.
doi: 10.1016/j.trd.2017.12.022 |
128 |
BAEK S, KIM Y G. C4I system security architecture: a perspective on big data lifecycle in a military environment[J]. Sustainability, 2021, 13 (24): 13827.
doi: 10.3390/su132413827 |
129 |
LIU C G, YU Y L, WANG P et al. Application of entity relation extraction method under CRF and syntax analysis tree in the construction of military equipment knowledge graph[J]. IEEE Access, 2020, 8, 200581- 200588.
doi: 10.1109/ACCESS.2020.3034894 |
130 |
LING C, ZHANG W Z, HE H. K-anonymity privacy-preserving algorithm for IoT applications in virtualization and edge computing[J]. Cluster Computing, 2023, 26 (2): 1495- 1510.
doi: 10.1007/s10586-022-03755-4 |
131 |
AMIN Z, ANJUM A, KHAN A, et al. Preserving privacy of high-dimensional data by l-diverse constrained slicing[J]. Electronics, 2022, 11 (8): 1257.
doi: 10.3390/electronics11081257 |
132 | LI N H, LI T C, VENKATASUBRAMANIAN S. T-closeness: privacy beyond k-anonymity and l-diversity[C]//Proc. of the IEEE 23rd International Conference on data Engineering, 2006: 106−115. |
133 |
KUN H, JUN W. A botnet detection method based on FARIMA and hill-climbing algorithm[J]. International Journal of Modern Physics B, 2018, 32 (32): 1850356.
doi: 10.1142/S0217979218503563 |
134 | CHOU X, GAMBARDELLA L M, MONTEMANNI R. A tabu search algorithm for the probabilistic orienteering problem[J]. Computers & Operations Research, 2021, 126, 105107. |
135 |
AIT-SAADI A, MERAIHI Y, SOUKANE A, et al. A novel hybrid chaotic Aquila optimization algorithm with simulated annealing for unmanned aerial vehicles path planning[J]. Computers and Electrical Engineering, 2022, 104, 108461.
doi: 10.1016/j.compeleceng.2022.108461 |
136 |
PRAJAPATI A, KUMAR S. PSO-MoSR: a PSO-based multi-objective software remodularisation[J]. International Journal of Bio-Inspired Computation, 2020, 15 (4): 254- 263.
doi: 10.1504/IJBIC.2020.108593 |
137 |
DISSANAYAKE S D, ARMSTRONG J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems[J]. Journal of lightwave technology, 2013, 31 (7): 1063- 1072.
doi: 10.1109/JLT.2013.2241731 |
13 | ZHANG H J, HUANG B Q, ZHANG P, et al. A new sos engineering philosophy-vitality theory[C]//Proc. of the 14th Annual Conference System of Systems Engineering, 2019: 19−24. |
14 | LU J Z, YANG Z R, ZHENG X C, et al. Exploring the concept of cognitive digital twin from model-based systems engineering perspective[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121 (9): 5835- 5854. |
15 |
BESSIS N, ZHAI X J, SOTIRIADIS S. Service-oriented system engineering[J]. Future Generation Computer Systems, 2018, 80, 211- 214.
doi: 10.1016/j.future.2017.11.025 |
16 | RAMEZANI M, TAFAZOLI S. Using artificial intelligence in mining excavators: automating routine operational decisions[J]. IEEE Industrial Electronics Magazine, 2020, 15 (1): 6- 11. |
17 |
罗贺, 杨善林, 丁帅. 云计算环境下的智能决策研究综述[J]. 系统工程学报, 2013, 28 (1): 134- 142.
doi: 10.3969/j.issn.1000-5781.2013.01.018 |
LUO H, YANG S L, DING S. A survey on intelligent decision-making in cloud computing environments[J]. Journal of Systems Engineering, 2013, 28 (1): 134- 142.
doi: 10.3969/j.issn.1000-5781.2013.01.018 |
|
18 | 于洪, 何德牛, 王国胤, 等. 大数据智能决策[J]. 自动化学报, 2020, 46 (5): 878- 896. |
YU H, HE D N, WANG G Y, et al. Big data intelligent decision-making[J]. Acta Automatica Sinica, 2020, 46 (5): 878- 896. | |
19 |
DONG Y C, ZHANG H J, HERRERA -VIEDMA E. Consensus reaching model in the complex and dynamic MAGDM problem[J]. Knowledge-Based Systems, 2016, 106, 206- 219.
doi: 10.1016/j.knosys.2016.05.046 |
20 |
LIU S, CHAN F T, RAN W X. Decision making for the selection of cloud vendor: an improved approach under group decision-making with integrated weights and objective/subjective attributes[J]. Expert Systems with Applications, 2016, 55, 37- 47.
doi: 10.1016/j.eswa.2016.01.059 |
21 | 荔建琦. 进化决策的模型、关键技术与应用研究[D]. 长沙: 国防科学技术大学, 2002. |
LI J Q. Models, key technologies, and applied studies of evolutionary decision-making [D]. Changsha: University of National Science and Technology, 2002. | |
138 |
ABRAHAM A, JATOTH R K, RAJASEKHAR A. Hybrid differential artificial bee colony algorithm[J]. Journal of computational and theoretical Nanoscience, 2012, 9 (2): 249- 257.
doi: 10.1166/jctn.2012.2019 |
139 | KEATING C, ROGERS R, UNAL R, et al. System of systems engineering[J]. Engineering Management Journal, 2003, 15 (3): 36- 45. |
140 | 魏晓童. 军事信息系统需求优先级排序方法研究[D]. 长沙: 国防科技大学, 2019. |
WEI X T. Research on the prioritization method of military information system requirements [D]. Changsha: National Defense University of Technology, 2019. | |
141 |
GAJOWNICZEK K, ZABKOWSKI T. Two-stage electricity demand modeling using machine learning algorithms[J]. Energies, 2017, 10 (10): 1547.
doi: 10.11896/jsjkx.20120002 |
142 | 徐弘升, 陆继翔, 杨志宏, 等. 基于深度强化学习的激励型需求响应决策优化模型[J]. 电力系统自动化, 2021, 45 (14): 97- 103. |
XU H S, LU J X, YANG Z H, et al. Incentive demand response decision optimization model based on deep reinforcement learning[J]. Automation of Electric Power System, 2021, 45 (14): 97- 103. | |
143 | 靖德果, 杨晓燕, 严寒冰. 自动化决策支持系统在美军能力需求开发中的应用[J]. 军民两用技术与产品, 2020, (2): 36- 42. |
JING D G, YANG X Y, YAN H B. Application of automated decision support system in the development of US military capability requirements[J]. Dual-Use Technologies and Products, 2020, (2): 36- 42. | |
144 | 徐向前, 豆亚杰, 钱立炜, 等. 作战体系能力需求敏捷开发方法研究[J]. 系统工程与电子技术, 2023, 45 (10): 3139- 3148. |
XU X Q, DOU Y J, QIAN L W, et al. Research on agile development methods for operational system capability requirements[J]. Systems Engineering and Electronics, 2023, 45 (10): 3139- 3148. | |
145 | QI Y D, WANG Z X, DONG Q C, et al. Modeling and verifying SoS performance requirements of C4ISR systems[J]. Journal of Systems Engineering and Electronics, 2010, 26 (4): 754. |
22 | LI C Q, CHEN Y Q, SHANG Y L. A review of industrial big data for decision making in intelligent manufacturing[J]. Engineering Science and Technology, an International Journal, 2022, 29, 101021. |
23 |
NAGOEV Z, PSHENOKOVA I, NAGOEVA O, et al. Learning algorithm for an intelligent decision making system based on multi-agent neurocognitive architectures[J]. Cognitive Systems Research, 2021, 66, 82- 88.
doi: 10.1016/j.cogsys.2020.10.015 |
24 |
KOUMAKHOV R. Conventions in Herbert Simon’s theory of bounded rationality[J]. Journal of Economic Psychology, 2009, 30 (3): 293- 306.
doi: 10.1016/j.joep.2009.03.001 |
25 |
FISHBURN P C. Foundations of decision analysis: along the way[J]. Management science, 1989, 35 (4): 387- 405.
doi: 10.1287/mnsc.35.4.387 |
26 | DING W P , PAL N R, LIN C T, et al. Guest editorial special issue on emerging computational intelligence techniques for decision making with big data in uncertain environments[J]. IEEE Tran. on Emerging Topics in Computational Intelligence, 2021, 5(1): 2−5. |
27 |
ZHANG J Z, SRIVASTAVA P R, SHARMA D, et al. Big data analytics and machine learning: a retrospective overview and bibliometric analysis[J]. Expert Systems with Applications, 2021, 184, 115561.
doi: 10.1016/j.eswa.2021.115561 |
28 | DEHGHAN-DEHNAVI S, FOTUHI-FIRUZABAD M, MOEINI-AGHTAIE M, et al. Decision-making tree analysis for industrial load classification in demand response programs[J]. IEEE Trans. on Industry Applications, 2020, 57(1): 26−35. |
29 | AGHAEI S, AZIZI M J, VAYANOS P. Learning optimal and fair decision trees for non-discriminative decision-making[C] //Proc. of the AAAI Conference on Artificial Intelligence, 2019, 33: 1418−1426. |
30 | LIANG J W, QIN Z, NI J B, et al. Practical and secure SVM classification for cloud-based remote clinical decision services[J]. IEEE Trans. on Computers, 2020, 70 (10): 1612- 1625. |
31 |
RAHMAN M G, ISLAM M Z. Adaptive decision forest: an incremental machine learning framework[J]. Pattern Recognition, 2022, 122, 108345.
doi: 10.1016/j.patcog.2021.108345 |
32 | KOTSIANTIS S B. Decision trees: a recent overview[J]. Artificial Intelligence Review, 2013, 39, 261- 283. |
33 |
XU X P, YAN X T, YANG W Y, et al. Algorithms and applications of intelligent swarm cooperative control: a comprehensive survey[J]. Progress in Aerospace Sciences, 2022, 135, 100869.
doi: 10.1016/j.paerosci.2022.100869 |
146 | 包战, 徐会法. 联合作战规划系统军事需求概念演示验证研究[J]. 军事运筹与评估, 2023, 38 (4): 77- 80. |
BAO Z, XU H F. Demonstration of military requirements concept of joint operations planning system[J]. Military Operations Research and Evaluation, 2023, 38 (4): 77- 80. | |
147 |
潘俊杰, 许瑞明, 刘双双. 基于决策偏好的联合火力打击兵力需求优化方法[J]. 指挥控制与仿真, 2018, 40 (5): 18- 20.
doi: 10.3969/j.issn.1673-3819.2018.05.004 |
PAN J J, XU D M, LIU S S. The optimization method of joint fire strike force demand based on decision preference[J]. Command & Control and Simulation, 2018, 40 (5): 18- 20.
doi: 10.3969/j.issn.1673-3819.2018.05.004 |
|
148 | 冯济舟, 吴亮, 董世友. 多视图军事需求模型要素关系冲突检测研究[J]. 中国电子科学研究院学报, 2022, 17(3): 297−304. |
FENG J Z, WU L, DONG S Y. Research on the factor relationship conflict detection of multi-view military demand model [J]. Journal of Chinese Academy of Electronic Sciences, 2022, 17 (3): 297−304. | |
149 |
安靖, 司光亚, 严江. 基于深度强化学习的作战概念能力需求分析[J]. 指挥控制与仿真, 2023, 45 (5): 18- 25.
doi: 10.3969/j.issn.1673-3819.2023.05.001 |
AN J, SI G Y, YAN J. Operational concept capability requirement analysis based on deep reinforcement learning[J]. Command & Control and Simulation, 2023, 45 (5): 18- 25.
doi: 10.3969/j.issn.1673-3819.2023.05.001 |
|
150 | 孙科武, 丁季时雨, 曲徽, 等. 基于强化学习的无人体系架构生成技术[C]//第3届体系工程学术会议——复杂系统与体系工程管理, 2021: 28−34. |
SUN K W, DING J S Y, QUN W, et al. Unmanned architecture generation technology based on reinforcement learning [C]//Proc. of the 3rd Systems Engineering Academic Conference—Complex Systems and Systems Engineering Management, 2021: 28−34. | |
151 |
郑华利, 陈铁健, 徐蕾, 等. 作战辅助决策模型设计及评估方法[J]. 火力与指挥控制, 2021, 46 (10): 67- 72.
doi: 10.3969/j.issn.1002-0640.2021.10.010 |
ZHENG H L, CHEN T J, XU L, et al. Design and evaluation method[J]. Fire and Command and Control, 2021, 46 (10): 67- 72.
doi: 10.3969/j.issn.1002-0640.2021.10.010 |
|
34 | ZHAO K C, XIAO J Q, LI C, et al. Fault diagnosis of rolling bearing using CNN and PCA fractal based feature extraction[J]. Measurement, 2023: 113754. |
35 | KUMAR A, GAUR N, CHAKRAVARTY S, et al. Analysis of spectrum sensing using deep learning algorithms: CNNs and RNNs[J]. Ain Shams Engineering Journal, 2024, 15 (3): 102505. |
36 |
NADDA M, SHAH S K, ROY S, et al. CFD-based deep neural networks model for predicting the hydrodynamics of fluidized beds[J]. Digital Chemical Engineering, 2023, 8, 100113.
doi: 10.1016/j.dche.2023.100113 |
37 |
KABBAJ O A, PÉAN L M, MASSON J B, et al. Occupancy states forecasting with a hidden Markov model for incomplete data, exploiting daily periodicity[J]. Energy and Buildings, 2023, 287, 112985.
doi: 10.1016/j.enbuild.2023.112985 |
38 | QIN K S, DU Y G. Simultaneous fault detection and isolation based on multi-task long short-term memory neural networks[J]. Chemometrics and Intelligent Laboratory Systems, 2023, 240, 104881. |
39 |
WU J, YANG F, HU W K. Unsupervised anomalous sound detection for industrial monitoring based on ArcFace classifier and gaussian mixture model[J]. Applied Acoustics, 2023, 203, 109188.
doi: 10.1016/j.apacoust.2022.109188 |
40 |
ZHANG F B, YU J, LIN D F, et al. UnIC: towards unmanned intelligent cluster and its integration into society[J]. Engineering, 2022, 12, 24- 38.
doi: 10.1016/j.eng.2022.02.008 |
41 |
HAN Q, PANG B, LI S, et al. Evaluation method and optimization strategies of resilience for air & space defense system of systems based on kill network theory and improved self-information quantity[J]. Defence Technology, 2023, 21, 219- 239.
doi: 10.1016/j.dt.2023.01.005 |
42 |
ZHANG S J, XIAO F Y. A TFN-based uncertainty modeling method in complex evidence theory for decision making[J]. Information Sciences, 2023, 619, 193- 207.
doi: 10.1016/j.ins.2022.11.014 |
43 |
HUANG X F, ZHAN J M, XU Z S, et al. A prospect-regret theory-based three-way decision model with intuitionistic fuzzy numbers under incomplete multi-scale decision information systems[J]. Expert Systems with Applications, 2023, 214, 119144.
doi: 10.1016/j.eswa.2022.119144 |
44 | ZHANG H J, WANG F, DONG Y C. Social trust driven consensus reaching model with a minimum adjustment feedback mechanism considering assessments-modifications willingness[J]. IEEE Trans. on Fuzzy Systems, 2021, 30 (6): 2019- 2031. |
45 |
ALIAHMADI A, SADJADI S J, JAFARI-ESKANDARI M. Design a new intelligence expert decision making using game theory and fuzzy AHP to risk management in design, construction, and operation of tunnel projects[J]. The International Journal of Advanced Manufacturing Technology, 2011, 53, 789- 798.
doi: 10.1007/s00170-010-2852-7 |
152 | 武剑, 孙玉停, 刘良. 作战值勤智能虚拟参谋系统需求与设计[J]. 国防科技, 2022, 43 (6): 89- 93,113. |
WU J, SUN Y T, LIU L. Requirements and design of intelligent virtual staff system for combat duty[J]. National Defense Science and Technology, 2022, 43 (6): 89- 93,113. | |
153 |
安波, 石东海, 沈雪石, 等. 装备技术体系结构优化设计理论及其关键技术研究[J]. 装备学院学报, 2014, 25 (2): 14- 17.
doi: 10.3783/j.issn.2095-3828.2014.02.004 |
AN B, SHI D H, SHEN X S, et al. Research on the optimization design theory of equipment technology architecture and its key technology[J]. Journal of Equipment College, 2014, 25 (2): 14- 17.
doi: 10.3783/j.issn.2095-3828.2014.02.004 |
|
154 | MISHRA S, JAIN S. An intelligent knowledge treasure for military decision support[M]. Hershey City: IGI Global Scientific Publishing, 2021. |
155 | RAGLIN A. Presentation of information uncertainty from IoBT for military decision making[C]//Proc. of the International Conference on Human-Computer Interaction, 2019: 39−47. |
156 | HUANG X, CHEN H Z. To select suitable supplier for complex equipment military-civilian collaborative design based on fuzzy preference information that from matching perspective[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42 (4): 3805- 3825. |
157 | 张晓丽. 联合作战体系结构分析与决策模型研究[D]. 南京: 南京航空航天大学, 2022. |
ZHANG X L. Joint operations architecture analysis and decision model research [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. | |
158 |
梁杰, 谭跃进, 占国熊, 等. 基于DoDAF人因视图的武器装备体系结构建模方法[J]. 火力与指挥控制, 2017, 42 (2): 1- 5,10.
doi: 10.3969/j.issn.1002-0640.2017.02.001 |
LAING J, TAN Y J, ZHAN G X, et al. The weapon and equipment architecture modeling method based on DoDAF human factor view[J]. Fire Control & Command Control, 2017, 42 (2): 1- 5,10.
doi: 10.3969/j.issn.1002-0640.2017.02.001 |
|
159 | KWON Y M, SOHN M, LEE H J. The design and implementation of ontology for architecture framework in military domain[J]. International Journal of Control and Automation, 2012, 5 (2): 141- 150. |
46 | SINGH G, RIZWANULLAH M. Combinatorial optimization of supply chain networks: a retrospective & literature review[J]. Materials Today: Proceedings, 2022, 62, 1636- 1642. |
47 | WILDER B, DILKINA B, TAMBE M. Melding the data-decisions pipeline: decision-focused learning for combinatorial optimization[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2019. |
48 |
DOU Y J, ZHANG Z X, ZHAO D L, et al. Weapons system portfolio selection based on the contribution rate evaluation of system of systems[J]. Journal of Systems Engineering and Electronics, 2019, 30 (5): 905- 919.
doi: 10.21629/JSEE.2019.05.09 |
49 |
DAVENDRALINGAM N, DELAURENTIS D A. A robust portfolio optimization approach to system of system architectures[J]. Systems Engineering, 2015, 18 (3): 269- 283.
doi: 10.1002/sys.21302 |
50 | BISHT G, PAL A K. Three-way decisions based multi-attribute decision-making with utility and loss functions[J]. European Journal of Operational Research, 2024, 316 (1): 268- 281. |
51 |
YE J, ZHAN J M, DING W P, et al. A novel three-way decision approach in decision information systems[J]. Information Sciences, 2022, 584, 1- 30.
doi: 10.1016/j.ins.2021.10.042 |
52 |
VELUSAMY D, PUGALENDHI G K. Water cycle algorithm tuned fuzzy expert system for trusted routing in smart grid communication network[J]. IEEE Trans. on Fuzzy Systems, 2020, 28 (6): 1167- 1177.
doi: 10.1109/TFUZZ.2020.2968833 |
53 |
LIU P D, FU Y X, WANG P, et al. Grey relational analysis-and clustering-based opinion dynamics model in social network group decision making[J]. Information Sciences, 2023, 647, 119545.
doi: 10.1016/j.ins.2023.119545 |
54 | 罗俊仁, 张万鹏, 项凤涛, 等. 智能推演综述: 博弈论视角下的战术战役兵棋与战略博弈[J]. 系统仿真学报, 2023, 35 (9): 1871- 1894. |
LUO J R, ZHANG W P, XIANG F T, et al. A survey of intelligent deduction: tactical-operational wargaming and strategic gaming from a game theory perspective[J]. Journal of System Simulation, 2023, 35 (9): 1871- 1894. | |
55 |
HEINONEN S, MINKKINEN M, KARJALAINEN J, et al. Testing transformative energy scenarios through causal layered analysis gaming[J]. Technological Forecasting and Social Change, 2017, 124, 101- 113.
doi: 10.1016/j.techfore.2016.10.011 |
56 |
ZHOU W J, SUBAGDJA B, TAN A H, et al. Hierarchical control of multi-agent reinforcement learning team in real-time strategy games[J]. Expert Systems with Applications, 2021, 186, 115707.
doi: 10.1016/j.eswa.2021.115707 |
160 | 陈泽. 面向服务的防空作战云体系建模与组合选择[D]. 武汉: 华中科技大学, 2020. |
CHEN Z. Service-oriented air defense combat cloud system modeling and combination selection[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
161 |
王哲, 李建华, 刘子杨, 等. 基于功能依赖的网络信息体系建模及重心分析[J]. 系统工程与电子技术, 2021, 43 (10): 2876- 2883.
doi: 10.12305/j.issn.1001-506X.2021.10.22 |
WANG Z, LI J H, LIU Z Y, et al. Network information system modeling and center of gravity analysis based on functional dependence[J]. Systems Engineering and Electronic Technology, 2021, 43 (10): 2876- 2883.
doi: 10.12305/j.issn.1001-506X.2021.10.22 |
|
162 |
赵小茹, 杨任农, 闫孟达, 等. 基于作战管理的有人-无人协同作战体系结构建模[J]. 空军工程大学学报, 2023, 24 (5): 41- 47.
doi: 10.3969/j.issn.2097-1915.2023.05.005 |
ZHAO X R, YANG R N, YAN M D, et al. Modeling of a human-unmanned collaborative operations architecture based on operational management[J]. Journal of Air Force University of Engineering, 2023, 24 (5): 41- 47.
doi: 10.3969/j.issn.2097-1915.2023.05.005 |
|
163 |
黄美根, 王维平, 王涛, 等. 基于EC2的无人化作战体系云流化指控架构设计方法[J]. 系统工程与电子技术, 2022, 44 (11): 3413- 3422.
doi: 10.12305/j.issn.1001-506X.2022.11.16 |
HUANG M G, WANG W P, WANG T, et al. The design method of unmanned combat system based on EC2[J]. Systems Engineering and Electronics, 2022, 44 (11): 3413- 3422.
doi: 10.12305/j.issn.1001-506X.2022.11.16 |
|
164 | 熊伟涛. 海战场联合搜救辅助决策方法及应用研究[D]. 长沙: 国防科技大学, 2023. |
XIONG W T. Research on the decision method and application of maritime battlefield joint search and rescue assistance [D]. Changsha: National University of Defense Technology, 2023. | |
165 | SONG S N, GUO X Y, XU F C, et al. Research on modeling of USV swarm target defense mission system from DoDAF operational viewpoint[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2021: 214−218. |
166 | 张明智, 邹立岩, 罗凯. 基于认知决策的智能无人机集群作战建模方法研究[J]. 军事运筹与评估, 2022, 37 (4): 61- 67. |
57 |
ZHANG X W, YAN Y, WANG L L, et al. A ranking approach for robust portfolio decision analysis based on multilinear portfolio utility functions and incomplete preference information[J]. Omega, 2024, 122, 102943.
doi: 10.1016/j.omega.2023.102943 |
58 |
PADHI S S, MUKHERJEE S, CHENG T C E. Optimal investment decision for industry 4.0 under uncertainties of capability and competence building for managing supply chain risks[J]. International Journal of Production Economics, 2024, 267, 109067.
doi: 10.1016/j.ijpe.2023.109067 |
59 |
SUN M. PP-GNN: pretraining position-aware graph neural networks with the NP-hard metric dimension problem[J]. Neurocomputing, 2023, 561, 126848.
doi: 10.1016/j.neucom.2023.126848 |
60 | PAN X H, WANG Y M, HE S F. A new regret theory-based risk decision-making method for renewable energy investment under uncertain environment[J]. Computers & Industrial Engineering, 2022, 170, 108319. |
61 | PENG Q Y, WANG C X, GOH M. Green innovation decision and coordination of supply chain under corporate social responsibility and risk preferences[J]. Computers & Industrial Engineering, 2023, 185, 109703. |
62 |
DUPPALA S V S, SANKARARAMAN K A, XU P. Online minimum matching with uniform metric and random arrivals[J]. Operations Research Letters, 2022, 50 (1): 45- 49.
doi: 10.1016/j.orl.2021.12.005 |
63 |
ECKL A, KIRSCHBAUM A, LEICHTER M, et al. A stronger impossibility for fully online matching[J]. Operations Research Letters, 2021, 49 (5): 802- 808.
doi: 10.1016/j.orl.2021.08.012 |
64 |
ZHANG Y H, ZHANG F, TONG S, et al. A dynamic planning model for deploying service functions chain in fog-cloud computing[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34 (10): 7948- 7960.
doi: 10.1016/j.jksuci.2022.07.012 |
65 |
LIN H H, TSENG T H, YEH C H, et al. What drives customers’ post-purchase price search intention in the context of online price matching guarantees[J]. Journal of Retailing and Consumer Services, 2020, 54, 102015.
doi: 10.1016/j.jretconser.2019.102015 |
66 |
ZHANG Y J, CHEN X, GAO L, et al. Consensus reaching with trust evolution in social network group decision making[J]. Expert Systems with Applications, 2022, 188, 116022.
doi: 10.1016/j.eswa.2021.116022 |
67 |
BATTISTON F, CENCETTI G, IACOPINI I, et al. Networks beyond pairwise interactions: structure and dynamics[J]. Physics Reports, 2020, 874, 1- 92.
doi: 10.1016/j.physrep.2020.05.004 |
166 | ZHANG M Z, ZOU L Y, LUO K. Research on intelligent UAV cluster combat modeling method based on cognitive decision-making[J]. Military Operations Research and Evaluation, 2022, 37 (4): 61- 67. |
167 | LIU J C, HAN X M, WANG R G. Risk assessment index system for equipment maintenance project of civil military integration[J]. The International Journal of Electrical Engineering & Education, 2021, 58 (2): 258- 275. |
168 | WANG Z, LIU S F, FANG Z G. Research on SoS-GERT network model for equipment system of systems contribution evaluation based on joint operation[J]. IEEE Systems Journal, 2019, 14 (3): 4188- 4196. |
169 | 马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44 (6): 1889- 1896. |
MA J, YANG J Y, WU X. Operational system effectiveness assessment based on pre-cluster active and semi-supervision[J]. Systems Engineering and Electronics, 2022, 44 (6): 1889- 1896. | |
170 | GAO F, HE W K, BI W H. An intuitionistic fuzzy weighted influence non-linear gauge system for equipment evaluation under system-of-systems warfare environment[J]. Expert Systems with Applications, 2023, 238(Part E): 122187. |
171 | 杨克巍, 杨志伟, 谭跃进, 等. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41 (2): 311- 321. |
YANG K W, YANG Z W, TAN Y J, et al. Review of the evaluation method of equipment system for system contribution rate[J]. Systems Engineering and Electronics, 2019, 41 (2): 311- 321. | |
172 | WANG J, WANG R H, HOU J, et al. Review of the multi-perspective evaluation methods of information systems equipment facing the system contribution rate[C]//Proc. of the 4th International Conference on Computer Science and Application Engineering, 2020. |
173 |
DREESBEIMDIEK K M, BEHR C M V, BRAYNE C, et al. Towards a contemporary design framework for systems-of-systems resilience[J]. Proceedings of the Design Society, 2022, 2, 1835- 1844.
doi: 10.1017/pds.2022.186 |
174 |
XU R J, LIU X, CUI D H, et al. An evaluation method of contribution rate based on fuzzy bayesian networks for equipment system-of-systems architecture[J]. Journal of Systems Engineering and Electronics, 2023, 34 (3): 574- 587.
doi: 10.23919/JSEE.2023.000081 |
175 | LI J C, ZHAO D L, JIANG J, et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2018, 51 (2): 696- 704. |
68 | HUMR S . Information in war: military innovation, battle networks, and the future of artificial intelligence[M]. Washington, D.C.: Georgetown University Press, 2023. |
69 |
QIU S M, CHEN F, WANG Y H, et al. Evolutionary method of heterogeneous combat network based on link prediction[J]. Entropy, 2023, 25 (5): 812.
doi: 10.3390/e25050812 |
70 | WU C K, WU P, WANG J, et al. Critical review of data-driven decision-making in bridge operation and maintenance[J]. Structure and Infrastructure Engineering, 2021, 18 (1): 47- 70. |
71 |
LIU J, LI T R, MONTERO J. Special issue on hybrid data and knowledge driven decision making under uncertainty[J]. Information Sciences, 2021, 577, 899- 901.
doi: 10.1016/j.ins.2021.07.092 |
72 | DEEPU T S, RAVI V. A conceptual framework for supply chain digitalization using integrated systems model approach and DIKW hierarchy[J]. Intelligent Systems with Applications, 2021, 10, 200048. |
73 |
ZOU Y Y, ZHANG Y J, LANG K, et al. Case-based reasoning for shipwreck emergency salvage scheme assisted decision[J]. Ocean Engineering, 2023, 278, 114332.
doi: 10.1016/j.oceaneng.2023.114332 |
74 |
GOOSSENS A, DE-SMEDT J, VANTHIENEN J. Extracting decision model and notation models from text using deep learning techniques[J]. Expert Systems with Applications, 2023, 211, 118667.
doi: 10.1016/j.eswa.2022.118667 |
75 |
CONSTANTINOU A C, FREESTONE M, MARSH W, et al. Causal inference for violence risk management and decision support in forensic psychiatry[J]. Decision Support Systems, 2015, 80, 42- 55.
doi: 10.1016/j.dss.2015.09.006 |
76 |
WANG Y R, VASILE M. Intelligent selection of NEO deflection strategies under uncertainty[J]. Advances in Space Research, 2023, 72 (7): 2676- 2688.
doi: 10.1016/j.asr.2022.08.086 |
77 |
ZHANG H, WANG J S, ZHANG H W, et al. Security computing resource allocation based on deep reinforcement learning in serverless multi-cloud edge computing[J]. Future Generation Computer Systems, 2024, 151, 152- 161.
doi: 10.1016/j.future.2023.09.016 |
78 |
TRUONG N, LEE G M, SUN K, et al. A blockchain-based trust system for decentralised applications: when trustless needs trust[J]. Future Generation Computer Systems, 2021, 124, 68- 79.
doi: 10.1016/j.future.2021.05.025 |
79 |
DAVAZDAHEMAMI B, KALGOTRA P, ZOLBANIN H M, et al. A developer-oriented recommender model for the app store: a predictive network analytics approach[J]. Journal of Business Research, 2023, 158, 113649.
doi: 10.1016/j.jbusres.2023.113649 |
176 | 李诗阳. 基于功能依赖网络的体系韧性量化分析与评估[D]. 武汉: 华中科技大学, 2022. |
LI S Y. Quantitative analysis and evaluation of system resilience based on function-dependent networks[D]. Wuhan: Huazhong University of Science and Technology, 2022. | |
177 | 刘娜, 李国栋, 洪伟, 等. 基于拓扑结构的体系贡献率评估方法[C]//第3届体系工程学术会议——复杂系统与体系工程管理, 2021: 334−341. |
LIU N, LI G D, HONG W, et al. System contribution rate assessment method based on topology structure [C]//Proc. of the 3rd Systems Engineering Academic Conference—Complex Systems and Systems Engineering Management, 2021: 334−341. | |
178 |
MCCONNELL B M, HODGSON T J, KAY M G, et al. Assessing uncertainty and risk in an expeditionary military logistics network[J]. The Journal of Defense Modeling and Simulation, 2021, 18 (2): 135- 156.
doi: 10.1177/1548512919860595 |
179 |
AHNER D K, PARSON C R. Optimal multi-stage allocation of weapons to targets using adaptive dynamic programming[J]. Optimization Letters, 2015, 9 (8): 1689- 1701.
doi: 10.1007/s11590-014-0823-x |
180 |
PAULSON E C, LINKOV I, KEISLER J M, et al. A game theoretic model for resource allocation among countermeasures with multiple attributes[J]. European Journal of Operational Research, 2016, 252 (2): 610- 622.
doi: 10.1016/j.ejor.2016.01.026 |
181 |
WAGNER M R, RADOVILSKY Z. Optimizing boat resources at the US coast guard: deterministic and stochastic models[J]. Operations research, 2012, 60 (5): 1035- 1049.
doi: 10.1287/opre.1120.1085 |
182 |
KANGASPUNTA J, SALO A. Expert judgments in the cost-effectiveness analysis of resource allocations: a case study in military planning[J]. OR Spectrum, 2014, 36 (1): 161- 185.
doi: 10.1007/s00291-013-0325-8 |
183 | SONG X, LIU B C, GONG G H. Modeling and simulation for complex network based military system-of-systems[C]//Proc. of the Applied Mechanics and Materials, 2012, 145: 224−228. |
184 |
TIMOTHEOU S. The random neural network: a survey[J]. The computer journal, 2010, 53 (3): 251- 267.
doi: 10.1093/comjnl/bxp032 |
185 | MITTAL V, CADDELL J. Adapting a military system for other markets early in the development lifecycle[J]. IEEE Trans. on Engineering Management, 2021, 69 (6): 3968- 3981. |
80 |
GHEEWALA S, XU S X, YEOM S, et al. Exploiting deep transformer models in textual review based recommender systems[J]. Expert Systems with Applications, 2024, 235, 121120.
doi: 10.1016/j.eswa.2023.121120 |
81 | LI M M, REINHARD P, OESTE-REISS S, et al. A value co-creation perspective on data labeling in hybrid intelligence systems: a design study[J]. Information Systems, 2023, 120: 102311. |
82 |
LATIF S, FANG X W, WANG L L. Intelligent decision support system approach for predicting the performance of students based on three-level machine learning technique[J]. Journal of Intelligent Systems, 2021, 30 (1): 739- 749.
doi: 10.1515/jisys-2020-0065 |
83 |
LU J X, JIANG Q, HUANG H, et al. Classification algorithm of case retrieval based on granularity calculation of quotient space[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35 (1): 2150003.
doi: 10.1142/S0218001421500038 |
84 | KHEMAKHEM F, ELLOUZI H, LTIFI H, et al. Agent-based intelligent decision support systems: a systematic review[J]. IEEE Trans. on Cognitive and Developmental Systems, 2020, 14 (1): 20- 34. |
85 |
杨立, 马佳佳, 江华禧, 等. 面向机器学习系统的需求建模与决策选择[J]. 计算机科学, 2020, 47 (12): 42- 49.
doi: 10.11896/jsjkx.201200021 |
YANG L, MA J J, JIANG H X, et al. Modeling and decision selection for machine learning systems[J]. Computer Science, 2020, 47 (12): 42- 49.
doi: 10.11896/jsjkx.201200021 |
|
86 |
JIANG W, REN Y H, WANG Y P. Improving anti-jamming decision-making strategies for cognitive radar via multi-agent deep reinforcement learning[J]. Digital Signal Processing, 2023, 135, 103952.
doi: 10.1016/j.dsp.2023.103952 |
87 | DEHGHAN-DEHNAVI S, FOTUHI- FIRUZABAD M, MOEINI-AGHTAIE M, et al. Decision-making tree analysis for industrial load classification in demand response programs[J]. IEEE Trans. on Industry Applications, 2020, 57 (1): 26- 35. |
88 |
GAO Y Y, XU A Q, HU P J H, et al. Incorporating association rule networks in feature category-weighted naive bayes model to support weaning decision making[J]. Decision Support Systems, 2017, 96, 27- 38.
doi: 10.1016/j.dss.2017.01.007 |
89 |
MAGHSOODI A I, TORKAYESH A E, WOOD L C, et al. A machine learning driven multiple criteria decision analysis using LS-SVM feature elimination: sustainability performance assessment with incomplete data[J]. Engineering Applications of Artificial Intelligence, 2023, 119, 105785.
doi: 10.1016/j.engappai.2022.105785 |
90 | ZHANG Q S, YAO H X. A fuzzy behavioral portfolio decision model with trapezoidal fuzzy return and aspiration[J]. Journal of Physics: Conference Series, 2021, 1978, 012053. |
91 |
LIU J B, MAI J X, LI H X, et al. On three perspectives for deriving three-way decision with linguistic intuitionistic fuzzy information[J]. Information Sciences, 2022, 588, 350- 380.
doi: 10.1016/j.ins.2021.12.072 |
92 | 向南, 豆亚杰, 姜江, 等. 基于专家信任网络的不完全信息武器选择决策[J]. 系统工程理论与实践, 2021, 41 (3): 759- 770. |
XIANG N, DOU Y J, JIANG J, et al. Selection decision of incomplete information weapons based on expert trust network[J]. Theory and Practice of System Engineering, 2021, 41 (3): 759- 770. | |
93 | PAN R S, YU J H, ZHAO Y M. Many-objective optimization and decision-making method for selective assembly of complex mechanical products based on improved NSGA-III and VIKOR[J]. Processes, 2021, 10(1): 34. |
94 |
MA Z L, REN Y, XIANG X L, et al. Data-driven decision-making for equipment maintenance[J]. Automation in Construction, 2020, 112, 103103.
doi: 10.1016/j.autcon.2020.103103 |
95 |
BAUMEISTER J, STRIFFLER A. Knowledge-driven systems for episodic decision support[J]. Knowledge-Based Systems, 2015, 88, 45- 56.
doi: 10.1016/j.knosys.2015.08.008 |
96 | 蒲志强, 易建强, 刘振, 等. 知识和数据协同驱动的群体智能决策方法研究综述[J]. 自动化学报, 2022, 48 (3): 627- 643. |
PU Z Q, YI J Q, LIU Z, et al. Review of group intelligence decision-making methods driven by knowledge and data[J]. Acta Automatica Sinica, 2022, 48 (3): 627- 643. | |
97 | PASCUAL-PAÑACH J, CUGUERÓ-ESCOFET M À, SÀNCHEZ-MARRÈ M. Interoperating data-driven and model-driven techniques for the automated development of intelligent environmental decision support systems[J]. Environmental Modelling & Software, 2021, 140, 105021. |
98 | KWON Y, LEE Z. A hybrid decision support system for adaptive trading strategies: combining a rule-based expert system with a deep reinforcement learning strategy[J]. Decision Support Systems, 2023, 177: 114100. |
99 |
MENNENGA M, CERDAS F, THIEDE S, et al. Exploring the opportunities of system of systems engineering to complement sustainable manufacturing and life cycle engineering[J]. Procedia CIRP, 2019, 80, 637- 642.
doi: 10.1016/j.procir.2019.01.026 |
100 |
ROGERS E B, MITCHELL S W. MBSE delivers significant return on investment in evolutionary development of complex SoS[J]. Systems Engineering, 2021, 24 (6): 385- 408.
doi: 10.1002/sys.21592 |
101 | ADAMS K M G, MEYERS T J. The US navy carrier strike group as a system of systems[J]. International Journal of System of Systems Engineering, 2011, 2 (2/3): 91- 97. |
102 | MAIER M W. Architecting principles for system of systems[J]. Systems Engineering: The Journal of the International Council on Systems Engineering, 1998, 1 (4): 267- 284. |
103 | 姜江, 金前程, 徐雪明, 等. 智能化时代国防科技体系工程初探[J]. 系统工程与电子技术, 2022, 44 (6): 1880- 1888. |
[1] | 陈凯柏, 高博, 高敏, 余道杰, 周晓东, 宋燕燕, 王越. 电子系统高功率微波效应研究进展[J]. 系统工程与电子技术, 2025, 47(8): 2429-2443. |
[2] | 彭莉莎, 孙宇祥, 薛宇凡, 周献中. 融合三支多属性决策与SAC的兵棋推演智能决策技术[J]. 系统工程与电子技术, 2024, 46(7): 2310-2322. |
[3] | 张梦钰, 豆亚杰, 陈子夷, 姜江, 杨克巍, 葛冰峰. 深度强化学习及其在军事领域中的应用综述[J]. 系统工程与电子技术, 2024, 46(4): 1297-1308. |
[4] | 李卫斌, 秦晨浩, 张天一, 毛鑫, 杨东浩, 纪文搏, 侯彪, 焦李成. 综述: 类脑智能导航建模技术及其应用[J]. 系统工程与电子技术, 2024, 46(11): 3844-3861. |
[5] | 王玉佳, 方伟, 徐涛, 余应福, 邓博元. 基于遗传模糊树的海空对抗无人机智能决策模型[J]. 系统工程与电子技术, 2022, 44(12): 3756-3765. |
[6] | 陈昊,黎明,江泽涛,储珺. 处理动态优化问题的演化元胞遗传算法[J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 1115-1221. |
[7] | 张媛, 刘文彪, 张立民. 基于主客观综合赋权的CGF态势评估建模研究[J]. Journal of Systems Engineering and Electronics, 2013, 35(1): 85-90. |
[8] | 王岩, 朱齐丹, 刘志林, 杨震. 改进的稀疏孪生支持向量回归算法[J]. Journal of Systems Engineering and Electronics, 2012, 34(9): 1940-1945. |
[9] | 梁新元. 因果图迭代推理算法研究[J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1299-1304. |
[10] | 杨博, 张军英. 基于高斯噪声模型的马尔可夫网络构建算法[J]. Journal of Systems Engineering and Electronics, 2012, 34(5): 1041-1045. |
[11] | 焦传海, 王可人. 一种基于免疫遗传算法的认知决策引擎[J]. Journal of Systems Engineering and Electronics, 2010, 32(5): 1083-1087. |
[12] | 柴雪,王钢林,武哲. 智能决策系统及其在飞控系统设计中的应用[J]. Journal of Systems Engineering and Electronics, 2010, 32(4): 833-836. |
[13] | 赵佰亭,陈希军,曾庆双. 基于邻域粒化的小生境微粒群混合数据约简[J]. Journal of Systems Engineering and Electronics, 2010, 32(12): 2603-2607. |
[14] | 孟光磊, 龚光红. 基于混合贝叶斯网的空域目标威胁评估方法[J]. Journal of Systems Engineering and Electronics, 2010, 32(11): 2398-2401. |
[15] | 王红滨1,刘大昕1,王念滨1,王桐2. 一种本体学习中的领域概念筛选算法[J]. Journal of Systems Engineering and Electronics, 2010, 32(1): 175-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||