1 |
CHEN Q, GIAMBENE G, YANG L, et al. Analysis of inter-satellite link paths for LEO mega-constellation networks[J]. IEEE Trans. on Vehicular Technology, 2021, 70 (3): 2743- 2755.
doi: 10.1109/TVT.2021.3058126
|
2 |
SI Y T, ZHANG E T, ZHANG W, et al. A survey on the development of low-orbit mega-constellation and its TT&C methods[C]//Proc. of the 5th International Conference on Information Communication and Signal Processing, 2022: 324−332.
|
3 |
REN S Y, YANG X H, WANG R L, et al. The interaction between the LEO satellite constellation and the space debris environment[J]. Applied Sciences, 2021, 11 (20): 9490.
doi: 10.3390/app11209490
|
4 |
ZHANG Y, LI B, LIU H K, et al. An analysis of close approaches and probability of collisions between LEO resident space objects and mega constellations[J]. Geo-spatial Information Science, 2022, 25 (1): 104- 120.
doi: 10.1080/10095020.2022.2031313
|
5 |
BOLEY A C, BUERS M. Satellite mega-constellations create risks in low Earth orbit, the atmosphere and on Earth[J]. Scientific Reports, 2021, 11 (1): 10624.
doi: 10.1038/s41598-021-90191-w
|
6 |
MOHAN N, FERGUSON A E, CECH H, et al. A multifaceted look at Starlink performance[C]//Proc. of the ACM on Web Conference, 2024: 2723−2734.
|
7 |
CORRADO R, BERTHET M, SAKAL M. Starlink for ASEAN: a changemaker in the race toward sustainable development?[J]. Space Policy, 2023, 65, 101554.
doi: 10.1016/j.spacepol.2023.101554
|
8 |
BOJOR L, PETRACHE T, CRISTESCU C. Emerging technologies in conflict: the impact of Starlink in the Russia–Ukraine war[J]. Land Forces Academy Review, 2024, 29 (2): 185- 194.
doi: 10.2478/raft-2024-0020
|
9 |
WOOTTON S. Enabling GEODSS for space situational awareness (SSA)[C]//Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2016.
|
10 |
GENG J, LYU N, WANG Z W, et al. Technological development and application of GSO agile small satellite[C]//Proc. of the 6th International Conference on Signal and Information Processing, Networking and Computers, 2020: 718−725.
|
11 |
MCCALL G H, DARRAH J H. Space situational awareness: difficult, expensive and necessary[J]. Air & Space Power Journal, 2014, 28 (6): 6- 16.
|
12 |
HUA B, YANG G, WU Y H, et al. Angle-only target tracking method for optical imaging micro-/nanosatellite based on APSO-SSUKF[J]. Space: Science & Technology, 2022, 170: 289−301.
|
13 |
张晟宇, 孙煜坤, 朱振才, 等. 启发式前后向链条优化组合在轨多目标观测规划算法[J]. 系统工程与电子技术, 2021, 43 (5): 1262- 1269.
doi: 10.12305/j.issn.1001-506X.2021.05.13
|
|
ZHANG S Y, SUN Y K, ZHU Z C, et al. Heuristic optimized forward-backward chains combination method for on-board multi-targets observation planning[J]. Systems Engineering and Electronics, 2021, 43 (5): 1262- 1269.
doi: 10.12305/j.issn.1001-506X.2021.05.13
|
14 |
佘玉成, 杨志, 王晓宇, 等. 基于双向锁定规则的多星任务规划算法[J]. 南京航空航天大学学报, 2022, 54 (S1): 43- 47.
|
|
SHE Y C, YANG Z, WANG X Y, et al. A mission planning algorithm for multi-satellites based on bidirectional locking rules[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2022, 54 (S1): 43- 47.
|
15 |
ZHANG S Y, ZHU Z C, HU H Y. Burst tasks scheduling method for infrared LEO constellation based on multi-strategies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 48 (12): 2405- 2414.
|
16 |
WU Y H, YU Z C, LI C Y, et al. Reinforcement learning in dual-arm trajectory planning for a free-floating space robot[J]. Aerospace Science and Technology, 2020, 98, 105657.
doi: 10.1016/j.ast.2019.105657
|
17 |
ZHANG T, ZHU Y J, MA D Y, et al. Toward rapid and optimal strategy for swarm conflict: a computational game approach[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (3): 3108- 3120.
doi: 10.1109/TAES.2024.3361436
|
18 |
YANG Y, LIU D S. A hybrid discrete artificial bee colony algorithm for imaging satellite mission planning[J]. IEEE Access, 2023, 11, 40006- 40017.
doi: 10.1109/ACCESS.2023.3269066
|
19 |
HUANG W Q, WANG H, YI D B, et al. A multiple agile satellite staring observation mission planning method for dense regions[J]. Remote Sensing, 2023, 15 (22): 5317.
doi: 10.3390/rs15225317
|
20 |
LU Z Z, SHEN X, LI D R, et al. Multiple super-agile satellite collaborative mission planning for area target imaging[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 117, 103211.
doi: 10.1016/j.jag.2023.103211
|
21 |
BIANCHESSI N, RIGHINI G. Planning and scheduling algorithms for the COSMO-SkyMed constellation[J]. Aerospace Science and Technology, 2008, 12 (7): 535- 544.
doi: 10.1016/j.ast.2008.01.001
|
22 |
HE L, LIU X L, LAPORTE G, et al. An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling[J]. Computers and Operations Research, 2018, 100, 12- 25.
doi: 10.1016/j.cor.2018.06.020
|
23 |
YIN X D, BAI M, LI Z H. Clustering-scheduling methods for oversubscribed short-term tasks of astronomical satellites[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2023, 40 (3): 307- 322.
|
24 |
BAREA A, URRUTXUA H, CADARSO L. Large-scale object selection and trajectory planning for multi-target space debris removal missions[J]. Acta Astronautica, 2020, 170, 289- 301.
doi: 10.1016/j.actaastro.2020.01.032
|
25 |
GUO J, PANG Z J, DU Z H. Optimal planning for a multi-debris active removal mission with a partial debris capture strategy[J]. Chinese Journal of Aeronautics, 2023, 36 (6): 256- 265.
doi: 10.1016/j.cja.2023.03.013
|
26 |
YUE C F, HUO T, LU M, et al. A systematic method for constrained attitude control under input saturation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (5): 6005- 6015.
|
27 |
ZHANG Y, WANG X Y, XI K W, et al. Comparison of shadow models and their impact on precise orbit determination of BeiDou satellites during eclipsing phases[J]. Earth Planets Space, 2022, 74 (1): 126.
doi: 10.1186/s40623-022-01684-5
|
28 |
LI H J, LIU Y H, LI K B, et al. Analytical prescribed performance guidance with field-of-view and impact-angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2024, 47 (4): 728- 742.
|
29 |
XIE H Y, WU B L, BERNELLI-ZAZZERA F. High minimum inter-execution time sigmoid event-triggered control for spacecraft attitude tracking with actuator saturation[J]. IEEE Trans. on Automation Science and Engineering, 2022, 20 (2): 1349- 1363.
|
30 |
HAN P, HE Z W, GENG Y Z, et al. Mission planning for agile earth observing satellite based on genetic algorithm[C]//Proc. of the Chinese Control Conference, 2019: 2118−2123.
|
31 |
何磊. 敏捷卫星协同调度模型与算法[D]. 长沙: 国防科技大学, 2019.
|
|
HE L. Agile earth observation satellites coordinating and scheduling: models and algorithms[D]. Changsha: National University of Defense Technology, 2019.
|
32 |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008
|
33 |
NADIMI-SHAHRAKI M H, ZAMANI H, ASGHARI V Z, et al. A systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizations[J]. Archives of Computational Methods in Engineering, 2023, 30 (7): 4113- 4159.
doi: 10.1007/s11831-023-09928-7
|
34 |
REDDY K S, PANWAR L, PANIGRAPHI B K, et al. Binary whale optimization algorithm: a new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets[J]. Engineering Optimization, 2019, 51 (3): 369- 389.
doi: 10.1080/0305215X.2018.1463527
|
35 |
CAKAJ S. The parameters comparison of the “Starlink” LEO satellites constellation for different orbital shells[J]. Frontiers in Communications and Networks, 2021, 2, 643095.
doi: 10.3389/frcmn.2021.643095
|