1 |
TYUKAVINA A, POTAPOV P, HANSEN M C, et al. Global trends of forest loss due to fire from 2001 to 2019[J]. Frontiers in Remote Sensing, 2022, 3, 825190.
doi: 10.3389/frsen.2022.825190
|
2 |
吴月圆, 舒立福, 王明玉, 等. 近年世界森林火灾综述[J]. 温带林业研究, 2022, 5 (4): 49- 54.
doi: 10.3969/j.issn.2096-4900.2022.04.009
|
|
WU Y Y, SHU L F, WANG M Y. Review of forest fires in the world in recent years[J]. Journal of Temperate Forestry Research, 2022, 5 (4): 49- 54.
doi: 10.3969/j.issn.2096-4900.2022.04.009
|
3 |
闫鹏, 杨帅. 试析我国森林航空消防建设现状与发展需求[J]. 森林防火, 2020, (1): 41- 43.
|
|
YAN P, YANG S. Analysis on the present situation and development demand of forest aviation guard in China[J]. Journal of Wildland Fire Science, 2020, (1): 41- 43.
|
4 |
金默. 透视中国“鲲龙”AG600M全状态新构型灭火机[J]. 生命与灾害, 2023, (1): 14- 17.
|
|
JIN M. Perspective on China’s “Kunlong”AG600M full-state new configuration fire extinguisher[J]. Life & Disaster, 2023, (1): 14- 17.
|
5 |
闫鹏. 新时期我国森林航空消防发展现状及对策研究[J]. 今日消防, 2022, 7 (1): 1- 4.
|
|
YAN P. Research on the development of aerial firefighting in forest fires in china in the new era and countermeasures[J]. Fire Protection Today, 2022, 7 (1): 1- 4.
|
6 |
周睿, 顾寅, 吕惠. 灭火飞机地面灭火剂分布快速预测方法及系统[P]. 中国: ZL114676910B, 2023-04-07.
|
|
ZHOU R, GU Y, LYU H. Fast prediction method and system for distribution of fire extinguishing agent on ground of fire-fighting aircraft[P]. China: ZL114676910B, 2023-04-07.
|
7 |
周睿, 吕惠, 顾寅. 灭火飞机安全约束边界构建方法及系统[P]. 中国: ZL114840917B, 2022-11-22.
|
|
ZHOU R, GU Y, LV H. Construction method and system of safety constraint boundary for fire-fighting aircraft[P]. China: ZL114840917B, 2022-11-22.
|
8 |
JOHNSON G, JORDAN C. Ground pattern performance of the marsh turbo thrush[R]. Melbourne: USDA Forest Service, Missoula Technology and Development Center, 2000.
|
9 |
TSUJIMURA H, KUBOTA K, SATO T. Numerical analysis of aerial firefighting using grid–particle coupling method[C]//Proc. of the AIAA SCITECH Forum, 2022.
|
10 |
ZHAO X, ZHOU P, YAN X, et al. Numerical simulation of the aerial drop of water for fixed-wing airtankers[C]// Proc. of the 31st International Council of the Aeronautical Science, 2018.
|
11 |
田煜. 大型灭火飞机投水过程数值仿真方法研究[J]. 飞行力学, 2019, 37 (3): 83- 86.
|
|
TIAN Y. Research on numerical simulation method of large fire-fighting aircraft water-dropping process[J]. Flight Dynamics, 2019, 37 (3): 83- 86.
|
12 |
王永亮, 蔡志勇, 赵红军. 大型灭火飞机投水算法研究[J]. 微计算机信息, 2012, 28 (9): 265- 268.
|
|
WANG Y L, CAI Z Y, ZHAO H J. Study of the algorithm for dropping water with air tanker[J]. Microcomputer Information, 2012, 28 (9): 265- 268.
|
13 |
LEGENDRE D, BECEKER R, ALMERAS E, et al. Air tanker drop patterns[J]. International Journal of Wildland Fire, 2013, 23 (2): 272- 280.
|
14 |
GU Y, ZHOU R, XIE H, et al. Study on the ground fraction of air tankers[J]. International Journal of Wildland Fire, 2023, 32 (4): 576- 592.
doi: 10.1071/WF22055
|
15 |
ZOHDI T I. A digital twin framework for machine learning optimization of aerial fire fighting and pilot safety[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113446.
doi: 10.1016/j.cma.2020.113446
|
16 |
蔡志勇, 石含玥, 赵红军, 等. 水陆两栖飞机灭火飞行仿真系统构建与仿真[J]. 航空学报, 2023, 44 (6): 227036.
|
|
CAI Z Y, SHI H Y, ZHAO H J, et al. Construction and simulation of amphibious aircraft fire-fighting flight simulation system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (6): 227036.
|
17 |
顾寅, 林凯毅, 项拓宇, 等. 航空消防大飞机灭火任务顶层指标分解分配方法及应用[J]. 清华大学学报(自然科学版), 2023, 63 (6): 934- 940.
|
|
GU Y, LIN K Y, XIANG T Y, et al. Top-level metrics decomposition and allocation method for large firefighting aircraft fire-extinguishing missions and its application[J]. Journal of Tsinghua University(Science and Technology), 2023, 63 (6): 934- 940.
|
18 |
WANG X Y, LIU H, TIAN Y L, et al. A fast optimization method of water-dropping scheme for fixed-wing firefighting aircraft[J]. IEEE Access, 2021, 9, 120815- 120832.
doi: 10.1109/ACCESS.2021.3106538
|
19 |
XUE Y, XUE B, ZHANG M J. Self-adaptive particle swarm optimization for large-scale feature selection in classification[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13 (5): 50.
|
20 |
TANG X Y, WWANG P, ZHANG Z Y, et al. Collaborative optimization of exhaust gas recirculation and Miller cycle of two-stage turbocharged marine diesel engines based on particle swarm optimization[J]. Journal of Central South University, 2022, 29 (7): 2142- 2156.
doi: 10.1007/s11771-022-5082-x
|
21 |
XIE J, LI X Y, GAO L, et al. A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems[J]. Journal of Manufacturing Systems, 2023, 71, 82- 94.
doi: 10.1016/j.jmsy.2023.09.002
|
22 |
LIU J F, WANG Z, ZHONG G, et al. A new focused crawler using an improved tabu search algorithm incorporating ontology and host information[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24 (6): 859- 875.
|
23 |
YI N, XU J J, YAN L M, et al. Task optimization and scheduling of distributed cyber–physical system based on improved ant colony algorithm[J]. Future Generation Computer Systems, 2020, 109, 134- 148.
doi: 10.1016/j.future.2020.03.051
|
24 |
耿蓉, 张昭, 牛天水, 等. 基于改进蚁群算法的天基资源调度研究与仿真[J]. 东北大学学报(自然科学版), 2023, 44 (2): 168- 176.
|
|
GENG R, ZHANG Z, NIU T S, et al. Research and simulation of space-based resource scheduling based on improved ant colony algorithm[J]. Journal of Northeastern University (Natural Science), 2023, 44 (2): 168- 176.
|
25 |
ZIEGLER D U, PRETTICO G, MATEO C, et al. Methodology for integrating flexibility into realistic large-scale distribution network planning using tabu search[J]. International Journal of Electrical Power & Energy Systems, 2023, 152, 109201.
|
26 |
NAYAK J, SWAPNAREKHA H, NAIK B, et al. 25 years of particle swarm optimization: flourishing voyage of two decades[J]. Archives of Computational Methods in Engineering, 2023, 30 (3): 1663- 1725.
doi: 10.1007/s11831-022-09849-x
|
27 |
王凌. 智能优化算法及其应用[M]. 北京: 清华大学出版社, 2004.
|
|
WANG L. Intelligent optimization algorithms and their applications[M]. Beijing: Tsinghua University Press, 2004.
|
28 |
罗琳胤, 吕继航. 灭火飞机投水动响应特性[J]. 北京航空航天大学学报, 2013, 39 (6): 798- 802.
|
|
LUO L Y, LV J H. Dynamic response analysis of water dropping for firefighting aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39 (6): 798- 802.
|
29 |
AMORIM J H. Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part II: model validation[J]. International Journal of Wildland Fire, 2011, 20 (3): 394- 406.
doi: 10.1071/WF09123
|