1 |
杨宇超, 方明, 赵晨帆, 等. 高速机动目标长时间相参积累算法[J]. 系统工程与电子技术, 2023, 45 (5): 1359- 1370.
|
|
YANG Y C, FANG M, ZHAO C F, et al. Long-time coherent integration algorithm for high-speed maneuvering targets[J]. Systems Engineering and Electronics, 2023, 45 (5): 1359- 1370.
|
2 |
战立晓, 汤子跃, 朱振波. 高机动小RCS目标长时间相参积累检测新方法[J]. 系统工程与电子技术, 2013, 35 (3): 510- 516.
|
|
ZHAN L X, TANG Z Y, ZHU Z B. Novel method of long-term coherent integration detection for maneuvering small RCS targets[J]. Systems Engineering and Electronics, 2013, 35 (3): 510- 516.
|
3 |
MI Y P, ZHANG Y H, YANG J F. Long-time coherent integration algorithm for high speed maneuvering target detection[J]. Journal of Applied Remote Sensing, 2023, 17 (2): 026515.
|
4 |
AUGUSTO A, ANTONIO D M, VIBCENZO C, et al. Radar phase noise modeling and effects, Part I: MTI filters[J]. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (2): 698- 711.
doi: 10.1109/TAES.2015.140549
|
5 |
吴顺君, 梅晓春. 雷达信号处理与数据处理技术[M]北京: 电子工业出版社, 2008: 235−238.
|
|
WU S J, MEI X C. Radar signal processing and data processing technology[M]. Beijing: Publishing House of Electronics Industry, 2008; 235−238.
|
6 |
王永良, 彭应宁. 空时二维自适应处理[M]. 北京: 清华大学出版社, 2000: 196−220.
|
|
WANG Y L, PENG Y N. Space-time adaptive processing[M]. Beijing: Tsinghua University Publisher, 2000 : 196−220.
|
7 |
张亮, 杜庆磊, 周必雷, 等. 基于非标准Keystone变换的捷变频雷达相参积累算法[J]. 系统工程与电子技术, 2023, 45 (12): 3836- 3844.
|
|
ZHANG L, DU Q L, ZHOU B L, et al. A coherent integration algorithm of frequency-agile radar based on non-standard Keystone transform[J]. Systems Engineering and Electronics, 2023, 45 (12): 3836- 3844.
|
8 |
高一丁, 吴敏, 郝程鹏, 等. 基于FrFT-Keystone运动补偿的OFDM声纳高速微弱目标相参积累检测算法[J]. 系统工程与电子技术, 2024, 46 (4): 1157- 1166.
|
|
GAO Y D, WU M, HAO C P, et al. Coherent integration and detection algorithm for high-speed weak targets in OFDM sonar based on FrFT-Keystone motion compensation[J]. Systems Engineering and Electronics, 2024, 46 (4): 1157- 1166.
|
9 |
WANG C L, JIU B, LIU H W. Maneuvering target detection in random pulse repetition interval radar via resampling-keystone transform[J]. Signal Processing, 2021, 181, 107899.
doi: 10.1016/j.sigpro.2020.107899
|
10 |
WAN J, TAN X H, CHEN Z Y, et al. Refocusing of ground moving target with Doppler ambiguity using keystone transform and modified second-order keystone transform for synthetic aperture radar[J]. Remote Sensing, 2021, 13 (2): 177.
doi: 10.3390/rs13020177
|
11 |
CARLSON B D, EVANS E D. Search radar detection and track with the Hough transform. I. system concept[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30 (1): 102- 108.
doi: 10.1109/7.250410
|
12 |
CARLSON B D, EVANS E D, WILSON S L. Search radar detection and track with the Hough transform II: detection statistics[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30 (1): 109- 115.
doi: 10.1109/7.250411
|
13 |
XU J, YU J, PENG Y N, et al. Radon-Fourier transform for radar target detection I: generalized Doppler filter bank[J]. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (2): 1186- 1202.
doi: 10.1109/TAES.2011.5751251
|
14 |
XU J, YU J, PENG Y N, et al. Radon-Fourier transform for radar target detection II: Blind Speed Sidelobe Suppression[J]. IEEE Trans. on Aerospace and Electronic Systems., 2011, 47 (4): 2473- 2489.
doi: 10.1109/TAES.2011.6034645
|
15 |
YU J, XU J, PENG Y N, et al. Radon-Fourier transform for radar target detection III: optimality and fast implementations[J]. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (2): 991- 1004.
doi: 10.1109/TAES.2012.6178044
|
16 |
CARRETERO M J, GISMERO M J, ASENSIO L A, et al. Application of the Radon transform to detect small-targets in sea clutter[J]. IET Radar, Sonar & Navigation, 2009, 3 (2): 155−166.
|
17 |
WEI W, WANG G H, SUN J P, et al. Polynomial Radon polynomial Fourier trans form for near space hypersonic maneuvering target detection[J]. IEEE Trans. on Aerospace and Electronic Systems, 2017, 45 (3): 1306- 1322.
|
18 |
林春风, 黄春琳, 粟毅. 双基地雷达Radon-Fourier变换弱目标积累检测[J]. 雷达学报, 2016, 5 (5): 526- 530.
doi: 10.12000/JR16049
|
|
LIN C F, HUANG C L, L Y. Target integration and detection with the Radon-Fourier transform for bistatic radar[J]. Journal of Radars, 2016, 5 (5): 526- 530.
doi: 10.12000/JR16049
|
19 |
段毅, 商哲然, 谭贤四, 等. 面向雷达高速目标检测的RFT快速实现方法[J]. 系统工程与电子技术, 2018, 40 (6): 1233- 1240.
doi: 10.3969/j.issn.1001-506X.2018.06.07
|
|
DUAN Y, SANG Z R, TAN X S, et al. Fast implementation of RFT for radar hypersonic targets detection[J]. Systems Engineering and Electronics, 2018, 40 (6): 1233- 1240.
doi: 10.3969/j.issn.1001-506X.2018.06.07
|
20 |
LIU Q H, GUO J P, LIANG Z N, et al. Motion parameter estimation and HRRP construction for high-speed weak targets based on modified GRFT for synthetic-wideband radar with PRF jittering[J]. IEEE Sensors Journal, 2021, 21 (20): 23234- 23244.
doi: 10.1109/JSEN.2021.3108053
|
21 |
YANG A D, TAO H H , WANG L, et al. Long-time coherent integration for high-speed target detection based on RKT-FRFT[C]//Proc. of the International Conference on Information Communication and Signal Processing, 2023: 69−73.
|
22 |
WANG L H, WANG J. Radon-Fourier transform in FMCW radar[C]//Proc. of the IEEE Radar Conference, 2020.
|
23 |
OREN L, IGAL B. Spectral Radon-Fourier transform for automotive radar applications[J]. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57(2): 1046−1056.
|
24 |
WANG L H, WANG J, ZHANG X D. Discrete Radon-Fourier transform and its approximation algorithm in short range ubiquitous radar[J]. IEEE Sensors Journal, 2021, 21 (21): 24409- 24421.
doi: 10.1109/JSEN.2021.3113091
|
25 |
MUSADIQ H, REHAN A, HAMMAD M. C. Segmented Radon Fourier transform for long-time coherent radars[J]. IEEE Sensors Journal, 2023, 23 (9): 9582- 9594.
doi: 10.1109/JSEN.2023.3260024
|
26 |
LANG P, FU X J, DONG J, et al. An efficient Radon Fourier transform-based coherent integration method for target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 3501905.
|
27 |
WANG J C, WU Y F, DENG X B, et al. Highly maneuvering target detection based on neural network and generalized Radon-Fourier transform[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 3507805.
|
28 |
裴家正, 黄勇, 陈宝欣, 等. 联合脉压与Radon傅里叶变换的长时间相参积累方法[J]. 雷达学报, 2021, 10 (6): 956- 969.
doi: 10.12000/JR21068
|
|
PEI J Z, HUANG Y, CHEN B X, et al. Long time coherent integration method based on combining pulse compression and Radon-Fourier transform[J]. Journal of Radars, 2021, 10 (6): 956- 969.
doi: 10.12000/JR21068
|
29 |
许稼, 彭应宁, 夏香根, 等. 空时频检测前聚焦雷达信号处理方法[J]. 雷达学报, 2014, 3 (2): 129- 141.
doi: 10.3724/SP.J.1300.2014.14023
|
|
XU J, PENG Y N, XIA X G, et al. Radar signal processing method of space-time-frequency focus-before-detects[J]. Journal of Radars, 2014, 3 (2): 129- 141.
doi: 10.3724/SP.J.1300.2014.14023
|
30 |
LIN L J, SUN G H, CHENG Z Y, et al. Long-time coherent integration for maneuvering target detection based on ITRT-MRFT[J]. IEEE Sensors Journal, 2020, 20 (7): 3718- 3731.
doi: 10.1109/JSEN.2019.2960323
|
31 |
关键, 裴家正, 黄勇, 等. 杂波背景下的时距联合检测前聚焦方法研究[J]. 雷达学报, 2022, 11 (5): 753- 764.
|
|
GUAN J, PEI J Z, HUANG Y, et al. Time range focus before detect method in clutter background[J]. Journal of Radars, 2022, 11 (5): 753- 764.
|
32 |
XU J, YAN L, ZHOU X, et al. Adaptive Radon-Fourier transform for weak radar target detection[J]. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (4): 1641- 1663.
doi: 10.1109/TAES.2018.2798358
|
33 |
李清亮, 尹志盈, 朱秀芹, 等. 雷达地杂波测量与建模[M] 北京: 国防工业出版社, 2017: 75−96.
|
|
LI Q L, YI Z Y, ZHU X Q, et al. Radar ground clutter measurement and modeling[M] Beijing: National Defence Industry Press, 2017: 75−96.
|