1 |
DEHGHAN A, SHAH M. Binary quadratic programing for online tracking of hundreds of people in extremely crowded scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (3): 568- 581.
doi: 10.3390/math10173079
|
2 |
LIN X, LEI J. Zeroing neural networks: finite-time convergence design, analysis and applications[M]. New York: IEEE, 2023.
|
3 |
RIVERA M, DALMAU O, TAGO J. Image segmentation by convex quadratic programming[C]// Proc. of the 19th International Conference on Pattern Recognition, 2008: 704−708.
|
4 |
LEITHEAD W E, ZHANG Y. O(N2)-operation approximation of covariance matrix inverse in Gaussian process regression based on quasi-Newton BFGS method[J]. Communications in Statistics-Simulation and Computation, 2007, 36 (2): 367- 380.
doi: 10.1080/03610910601161298
|
5 |
CALOGERO L, PAGONE M, RIZZO A. Enhanced quadratic programming via pseudo-transient continuation: an application to model predictive control[J]. IEEE Control Systems Letters, 2024, 8, 1661- 1666.
doi: 10.1109/LCSYS.2024.3410895
|
6 |
POLYAK B T. Newton’s method and its use in optimization[J]. European Journal of Operational Research, 2007, 181 (3): 1086- 1096.
doi: 10.1016/j.ejor.2005.06.076
|
7 |
DAI J H, YANG X, XIAO L, et al. Design and analysis of a self-adaptive zeroing neural network for solving time-varying quadratic programming[J]. IEEE Trans. on Neural Networks and Learning Systems, 2023, 34 (10): 7135- 7144.
doi: 10.1109/TNNLS.2021.3138900
|
8 |
ZHANG Y N, JIANG D C, WANG J. A recurrent neural network for solving Sylvester equation with time-varying coefficients[J]. IEEE Trans. on Neural Networks, 2002, 13 (5): 1053- 1063.
doi: 10.1109/TNN.2002.1031938
|
9 |
ZHANG Y N, LI Z. Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints[J]. Physics Letters A, 2009, 373 (18/19): 1639- 1643.
doi: 10.1016/j.physleta.2009.03.011
|
10 |
JIN L, ZHANG Y N, LI S, et al. Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators[J]. IEEE Trans. on Industrial Electronics, 2016, 63 (11): 6978- 6988.
doi: 10.1109/TIE.2016.2590379
|
11 |
JIANG C Z, XIAO X C, LIU D Z, et al. Nonconvex and bound constraint zeroing neural network for solving time-varying complex-valued quadratic programming problem[J]. IEEE Trans. on Industrial Informatics, 2021, 17 (10): 6864- 6874.
doi: 10.1109/TII.2020.3047959
|
12 |
ZHENG L N, YU W Q, XU Z Q, et al. Design, analysis, and application of a discrete error redefinition neural network for time-varying quadratic programming[J]. IEEE Trans. on Neural Networks and Learning Systems, 2024, 35 (10): 13646- 13657.
doi: 10.1109/TNNLS.2023.3270381
|
13 |
YANG Y, LI W B, ZHOU J S, et al. PTC-FOZNN: a strictly predefined-time convergent fractional-order recurrent neural network for solving time-variant quadratic programming [C]// Proc. of the IEEE 18th International Conference on Control and Automation, 2024: 340−346.
|
14 |
XIAO L, YAN X R, HE Y J, et al. A variable-gain fixed-time convergent and robust ZNN model for image fusion: design, analysis, and verification[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2024, 54 (6): 3415- 3426.
|
15 |
LIAO B L, ZHANG Y N, JIN L. Taylor O(h3) discretization of ZNN models for dynamic equality-constrained quadratic programming with application to manipulators[J]. IEEE Trans. on Neural Networks and Learning Systems, 2016, 27 (2): 225- 237.
doi: 10.1109/TNNLS.2015.2435014
|
16 |
李建锋, 刘哲宇, 荣洋, 等. 用于线性噪声时变凸二次规划的归零神经网络[J]. 通信学报, 2023, 44 (4): 226- 233.
doi: 10.11959/j.issn.1000-436x.2023075
|
|
LI J F, LIU Z Y, RONG Y, et al. Zeroing neural network for time-varying convex quadratic programming with linear noise[J]. Journal on Communications, 2023, 44 (4): 226- 233.
doi: 10.11959/j.issn.1000-436x.2023075
|
17 |
MARBLE A E, MCINTYRE C M, HASTINGSJAMES R, et al. A comparison of digital algorithms used in computing the derivative of left-ventricular pressure[J]. IEEE Trans. on Biomedical Engineering, 1981, 28 (7): 524- 529.
|
18 |
NAZEMI A, NAZEMI M. A gradient-based neural network method for solving strictly convex quadratic programming problems[J]. Cognitive Computation, 2014, 6 (3): 484- 495.
doi: 10.1007/s12559-014-9249-0
|
19 |
GLANDORF D R. Lagrange multipliers and the state transition matrix for coasting arcs[J]. AIAA Journal, 1969, 7 (2): 363- 365.
doi: 10.2514/3.5109
|
20 |
胡广书. 数字信号处理: 理论、算法与实现[M]. 2版. 北京: 清华大学出版社, 2003.
|
|
HU G S. Digital signal processing: theory, algorithms and implementation [M]. 2nd ed. Beijing: Press of Tsinghua University, 2003.
|
21 |
王君. 基于神经动力学的变参有限时间递归神经网络研究及其应用[D]. 南昌: 南昌大学, 2023.
|
|
WANG J. Research and application of variable-parameter finite-time recurrent neural network based on neurodynamic[D]. Nanchang: Nanchang University, 2023.
|
22 |
TIMOFTE V. Stone–Weierstrass theorems revisited[J]. Journal of Approximation Theory, 2005, 136 (1): 45- 59.
doi: 10.1016/j.jat.2005.05.004
|
23 |
王悦斌, 蒋景飞, 张建秋. 动态时频谱分析、探测和跟踪的随机有限集法[J]. 航空学报, 2019, 40 (6): 322600.
|
|
WANG Y B, JIANG J F, ZHANG J Q. Random finite set approach to analyzing, detecting, and tracking dynamic time-frequency spectra[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40 (6): 322600.
|
24 |
HEINONEN P, NEUVO Y. FIR-median hybrid filters with predictive FIR substructures[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1988, 36 (6): 892- 899.
doi: 10.1109/29.1600
|
25 |
ZHANG G D, LI C L. An UKF target tracking method with effective suppression of angular glint[C]// Proc. of the 10th IEEE International Conference on Control and Automation, 2013: 956−960.
|
26 |
方安然, 李旦, 张建秋. 异常值和未知观测噪声鲁棒的非线性滤波器[J]. 航空学报, 2021, 42 (7): 324675- 545.
|
|
FANG A R, LI D, ZHANG J Q. Nonlinear filter robust to outlier and unknown observation noise[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (7): 324675- 545.
|
27 |
SARKKA S. Bayesian filtering and smoothing[M]. 2nd ed. New York: Cambridge University Press, 2013.
|
28 |
PICHE R, SARKKA S, HARTIKAINEN J. Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution[C]// Proc. of the 22nd IEEE International Workshop on Machine Learning for Signal Processing, 2012.
|
29 |
方安然, 李旦, 张建秋. 异常值和未知观测噪声鲁棒的卡尔曼滤波器[J]. 系统工程与电子技术, 2021, 43(3): 593−602.
|
|
FANG A R, LI D, ZHANG J Q. Outlier and unknown observation noise robust Kalman filter[J] Systems Engineering and Electronics, 2021, 43(3): 593−602.
|
30 |
ZHANG X Y, CHEN L M, LI S, et al. Design and analysis of recurrent neural network models with non-linear activation functions for solving time-varying quadratic programming problems[J]. CAAI Transaction on Intelligence Technology, 2021, 6 (4): 394- 404.
doi: 10.1049/cit2.12019
|
31 |
JIN L, LI S. Distributed task allocation of multiple robots: a control perspective[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2018, 48 (5): 693- 701.
|
32 |
XU F, LI Z X, NIE Z Y, et al. Zeroing neural network for solving time-varying linear equation and inequality systems[J]. IEEE Trans. on Neural Networks and Learning Systems, 2019, 30 (8): 2346- 2357.
doi: 10.1109/TNNLS.2018.2884543
|
33 |
SUN S, XU J, REN W. Distributed continuous-time algorithms for time-varying constrained convex optimization[J]. IEEE Trans. on Automatic Control, 2022, 68 (7): 3931- 3946.
|
34 |
齐一萌. 基于赢者通吃网络的多机器人竞争协同研究[D]. 兰州: 兰州大学, 2022.
|
|
QI Y M. Multi-robot competitive coordination based on winner-take-all network[D]. Lanzhou: Lanzhou University, 2022.
|
35 |
曹龙虎. 论现代民主选举中的政治营销[J]. 天津行政学院学报, 2013, 15 (5): 22- 27.
|
|
CAO L H. On political marketing in modern democratic elections[J]. Journal of Tianjin Administrative Institute, 2013, 15 (5): 22- 27.
|
36 |
HU X L, WANG J. An improved dual neural network for solving a class of quadratic programming problems and its k-winners-take-all application[J]. IEEE Trans. on Neural Networks, 2008, 19 (12): 2022- 2031.
doi: 10.1109/TNN.2008.2003287
|