系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1950-1963.doi: 10.12305/j.issn.1001-506X.2025.06.23
冯泽彪1, 杨旭1, 汪建均2,*
收稿日期:
2024-09-29
出版日期:
2025-06-25
发布日期:
2025-07-09
通讯作者:
汪建均
作者简介:
冯泽彪 (1988—), 男, 讲师, 博士, 主要研究方向为质量工程、稳健参数设计、计算机试验设计、机器学习基金资助:
Zebiao FENG1, Xu YANG1, Jianjun WANG2,*
Received:
2024-09-29
Online:
2025-06-25
Published:
2025-07-09
Contact:
Jianjun WANG
摘要:
针对非平稳响应的稳健参数设计问题, 在树状高斯过程(treed Gaussian process, TGP)建模的框架下, 提出基于主动学习算法的稳健参数优化模型。首先, 综合运用D-optimal和Expected Improvement设计策略, 构建主动学习算法, 以改善设计点的空间填充性能和优化性能。然后, 利用贝叶斯分层建模方法构建模型结构, 以估计输入和输出之间的非平稳函数关系。最后, 利用TGP模型输出, 构建基于质量损失函数的稳健参数优化模型。利用遗传算法(Genetic algorithm, GA)进行全局优化, 以获得最优输入参数设置。仿真结果表明, 所提方法所得最优解具有更小的质量损失和预测偏差, 改善了最优解潜在区域的预测精度, 降低了预测响应的不确定性, 进而提升了非平稳响应稳健优化结果的有效性。
中图分类号:
冯泽彪, 杨旭, 汪建均. 基于主动学习的树状高斯过程建模与参数优化[J]. 系统工程与电子技术, 2025, 47(6): 1950-1963.
Zebiao FENG, Xu YANG, Jianjun WANG. Modeling and parameter optimization based on active learning treed Gaussian process[J]. Systems Engineering and Electronics, 2025, 47(6): 1950-1963.
表6
试验数据"
序号 | 光束宽度/mm | 扫描速度/m | 层厚度/mm | 功率/W | 总体形变/mm |
1 | 0.188 | 1 046 | 0.155 | 200 | 0.412 14 |
2 | 0.282 | 1 606 | 0.733 | 200 | 0.133 27 |
3 | 0.215 | 1 686 | 1.114 | 1 000 | 1.077 72 |
4 | 0.207 | 1 965 | 1.338 | 1 000 | 0.992 92 |
5 | 0.234 | 1 933 | 1.625 | 1 000 | 0.765 07 |
6 | 0.275 | 1 374 | 0.653 | 200 | 0.147 92 |
7 | 0.157 | 1 834 | 1.244 | 1 000 | 1.540 99 |
8 | 0.245 | 1 146 | 0.277 | 200 | 0.241 13 |
9 | 0.259 | 1 199 | 1.720 | 1 000 | 0.888 81 |
10 | 0.251 | 1 542 | 1.460 | 1 000 | 0.769 47 |
11 | 0.268 | 1 402 | 0.553 | 200 | 0.173 95 |
12 | 0.172 | 1 746 | 1.868 | 1 000 | 1.459 93 |
13 | 0.219 | 1 862 | 1.572 | 1 000 | 0.834 16 |
14 | 0.161 | 1 270 | 0.379 | 200 | 0.478 60 |
15 | 0.173 | 1 494 | 0.423 | 200 | 0.359 53 |
16 | 0.297 | 1 220 | 1.931 | 1 000 | 0.777 81 |
17 | 0.201 | 1 065 | 1.025 | 1 000 | 1.536 95 |
18 | 0.185 | 1 761 | 0.930 | 200 | 0.264 06 |
19 | 0.290 | 1 339 | 0.818 | 200 | 0.127 85 |
20 | 0.226 | 1 584 | 1.205 | 1 000 | 0.998 54 |
21 | 0.296 | 1 444 | 1.001 | 1 000 | 0.656 56 |
22 | 0.257 | 1 655 | 0.748 | 200 | 0.152 71 |
23 | 0.225 | 1 802 | 0.867 | 200 | 0.182 09 |
24 | 0.256 | 1 117 | 0.228 | 200 | 0.221 61 |
25 | 0.224 | 1 723 | 0.539 | 200 | 0.183 51 |
26 | 0.243 | 1 513 | 0.566 | 200 | 0.172 92 |
27 | 0.247 | 1 446 | 0.484 | 200 | 0.222 94 |
28 | 0.251 | 1 299 | 0.287 | 200 | 0.213 86 |
29 | 0.276 | 1 021 | 0.444 | 200 | 0.213 72 |
30 | 0.234 | 1 470 | 0.434 | 200 | 0.200 40 |
1 |
汪建均,马义中,欧阳林寒,等.多响应稳健参数设计的贝叶斯建模与优化[J].管理科学学报,2016,19(2):85-94.
doi: 10.3969/j.issn.1007-9807.2016.02.008 |
WANGJ J,MAY Z,OUYANGL H,et al.Bayesian modeling and optimization of multi-response robust parameter design[J].Journal of Management Sciences in China,2016,19(2):85-94.
doi: 10.3969/j.issn.1007-9807.2016.02.008 |
|
2 |
何桢,宗志宇,孔祥芬.改进的满意度函数法在多响应优化中的应用[J].天津大学学报,2006,39(9):1136-1140.
doi: 10.3969/j.issn.0493-2137.2006.09.023 |
HEZ,ZONGZ Y,KONGX F.Application of improved desir-ability function method to the multi-response optimization[J].Journal of Tianjin University,2006,39(9):1136-1140.
doi: 10.3969/j.issn.0493-2137.2006.09.023 |
|
3 | 张旭涛,何桢.基于似无关回归的多元稳健损失函数方法[J].数理统计与管理,2017,36(5):802-809. |
ZHANGX T,HEZ.A robust loss function approach for multi-response optimization based on seemingly unrelated regressions[J].Journal of Applied Statistics & Management,2017,36(5):802-809. | |
4 | WUC F,HAMADAM S.Experiments: planning, analysis and parameter design optimization[M].New York:John Wiley & Sons,2009. |
5 | WILLIAMSC K I,RASMUSSENC E.Gaussian processes for machine learning[M].Cambridge:MIT press,2006. |
6 | SANTNERT J,WILLIAMSB J,NOTZW.The design and analysis of computer experiments[M].New York:Springer,2003. |
7 |
KLEIJNENJ P C.Regression and Kriging metamodels with their experimental designs in simulation: a review[J].European Journal of Operational Research,2017,256(1):1-16.
doi: 10.1016/j.ejor.2016.06.041 |
8 | 冯泽彪,汪建均,马义中.基于多变量高斯过程模型的贝叶斯建模与稳健参数设计[J].系统工程理论与实践,2020,40(3):703-713. |
FENGZ B,WANGJ J,MAY Z.Bayesian modeling and robust parameter design based on multivariate Gaussian process model[J].Systems Engineering-Theory & Practice,2020,40(3):703-713. | |
9 |
ANKENMANB,NELSONB L,STAUMJ.Stochastic Kriging for simulation metamodeling[J].Operations Research,2010,58(2):371-382.
doi: 10.1287/opre.1090.0754 |
10 |
TANM H,WUC J.Robust design optimization with quadratic loss derived from Gaussian process models[J].Technometrics,2012,54(1):51-63.
doi: 10.1080/00401706.2012.648866 |
11 |
DELLINOG,KLEIJNENJ P C,MELONIC.Robust optimization in simulation: taguchi and Krige combined[J].INFORMS Journal on Computing,2012,24(3):471-484.
doi: 10.1287/ijoc.1110.0465 |
12 |
REHMANS,LANGELAARM,VAN KEULENF.Efficient Kriging-based robust optimization of unconstrained problems[J].Journal of Computational Science,2014,5(6):872-881.
doi: 10.1016/j.jocs.2014.04.005 |
13 |
BAOL L,HUANGQ,WANGK B.Robust parameter design for profile quality control[J].Quality and Reliability Engineering International,2016,32(3):1059-1070.
doi: 10.1002/qre.1814 |
14 |
HANM,TANM H.Optimal robust and tolerance design for computer experiments with mixture proportion inputs[J].Quality and Reliability Engineering International,2017,33(8):2255-2267.
doi: 10.1002/qre.2188 |
15 |
COSTAN R,LOURENCOJ.Gaussian process modelan exploratory study in the response surface methodology[J].Quality and Reliability Engineering International,2016,32(7):2367-2380.
doi: 10.1002/qre.1940 |
16 |
KLEIJNENJ P,MEHDADE.Estimating the variance of the predictor in stochastic Kriging[J].Simulation Modelling Practice and Theory,2016,66,166-173.
doi: 10.1016/j.simpat.2016.03.008 |
17 | FENGZ B,WANGJ J,MAY Z,et al.Multi-response robust optimization using GP model with variance calibration[J].Computers & Industrial Engineering,2022,169,108299. |
18 | SHENB,GNANASAMBANDAMR,WANGR,et al.Multi-task Gaussian process upper confidence bound for hyperparameter tuning and its application for simulation studies of additive manufacturing[J].IISE Transactions,2022,55(5):496-508. |
19 |
冯泽彪,汪建均.考虑响应共变特性的多响应稳健参数设计[J].系统工程与电子技术,2019,41(9):2048-2057.
doi: 10.3969/j.issn.1001-506X.2019.09.18 |
FENGZ B,WANGJ J.Multi-response robust parameter design based on covariant characteristics of model responses[J].Systems Engineering and Electronics,2019,41(9):2048-2057.
doi: 10.3969/j.issn.1001-506X.2019.09.18 |
|
20 |
翟翠红,汪建均,冯泽彪.基于高斯过程模型的多响应稳健参数设计[J].系统工程与电子技术,2021,43(12):3683-3693.
doi: 10.12305/j.issn.1001-506X.2021.12.32 |
ZHAIC H,WANGJ J,FENGZ B.Robust parameter design of multiple responses based on Gaussian process model[J].Systems Engineering and Electronics,2021,43(12):3683-3693.
doi: 10.12305/j.issn.1001-506X.2021.12.32 |
|
21 |
KIMH M,MALLICKB K,HOLMESC C.Analyzing non-stationary spatial data using piecewise Gaussian processes[J].Journal of the American Statistical Association,2005,100(470):653-668.
doi: 10.1198/016214504000002014 |
22 | GRAMACYR B,LEEH K.Bayesian treed Gaussian process models with an application to computer modeling[J].Journal of the American Statistical Association,2012,103(483):1119-1130. |
23 |
PRATOLAM T,SAINS R,BINGHAMD,et al.Fast sequential computer model calibration of large non-stationary spatial-temporal processes[J].Technometrics,2013,55(2):232-242.
doi: 10.1080/00401706.2013.775897 |
24 |
HEATONM J,CHRISTENSENW F,TERRESM A.Non-stationary Gaussian process models using spatial hierarchical clustering from finite differences[J].Technometrics,2017,59(1):93-101.
doi: 10.1080/00401706.2015.1102763 |
25 | KOJ,KIMH.Deep Gaussian process models for integrating multifidelity experiments with non-stationary relationships[J].IISE Transactions,2022,54(7):686-698. |
26 |
GNANASAMBANDAMR,SHENB,LAWA C,et al.Deep Gaussian process for enhanced Bayesian optimization and its application in additive manufacturing[J].IISE Transactions,2025,57(4):423-436.
doi: 10.1080/24725854.2024.2312905 |
27 | HUANGQ.An impulse response formulation for small-sample learning and control of additive manufacturing quality[J].IISE Transactions,2022,55(9):926-939. |
28 | 王国东, 李晓阳. 模型不确定情况下的序贯加速寿命试验设计与分析[EB/OL]. [2024-09-29]. http://kns.cnki.net/kcms/detail/11.2267.N.20240905.1141.008.html. |
WANG G D, LI X Y. Planning and analysis of sequential acce-lerated life tests under model uncertainty[EB/OL]. [2024-09-29]. http://kns.cnki.net/kcms/detail/11.2267.N.20240905.1141.008.html. | |
29 | 崔庆安,朱傲泉.基于GPR的3D打印稳健性参数设计[J].工业工程与管理,2022,27(5):127-135. |
CUIQ A,ZHUA Q.Research on robust parameter design of 3D printing based on GPR[J].Industrial Engineering and Ma-nagement,2022,27(5):127-135. | |
30 |
CHENJ H,KANGL L,LING.Gaussian process assisted active learning of physical laws[J].Technometrics,2021,63(3):329-342.
doi: 10.1080/00401706.2020.1817790 |
31 | WANGP,ZHANGZ,HUANGX Y,et al.An application of active learning Kriging for the failure probability and sensitivity functions of turbine disk with imprecise probability distributions[J].Engineering with Computers,2021,38(4):3417-3437. |
32 |
YUEX,WENY,HUNTJ H,et al.Active learning for Gaussian process considering uncertainties with application to shape control of composite fuselage[J].IEEE Trans.on Automation Science and Engineering,2021,18(1):36-46.
doi: 10.1109/TASE.2020.2990401 |
33 | KUMARS,GOPIT,HARIKEERTHANAN,et al.Machine learning techniques in additive manufacturing: a state-of-the-art review on design, processes and production control[J].Journal of Intelligent Manufacturing,2022,34(1):21-55. |
34 |
BERGERJ O,DE OLIVEIRAV,SANSOB.Objective Baye-sian analysis of spatially correlated data[J].Journal of the American Statistical Association,2001,96(456):1361-1374.
doi: 10.1198/016214501753382282 |
35 | KLEIJNENJ P,VAN-BEERSW,VAN NIEUWENHUYSEI.Expected improvement in efficient global optimization through bootstrapped Kriging[J].Journal of Global Optimization,2011,54(1):59-73. |
36 |
YUEY,SPECKMANP L.Nonstationary spatial Gaussian Markov random fields[J].Journal of Computational Graphical Statistics,2010,19(1):96-116.
doi: 10.1198/jcgs.2009.08124 |
37 | JOSEPHV R,HUNGY.Orthogonal-maximin Latin hypercube designs[J].Journal of Statistica Sinica,2008,18(1):171-186. |
[1] | 丁春风, 汪建均. 基于Kriging模型的稳健参数设计[J]. 系统工程与电子技术, 2023, 45(7): 2269-2279. |
[2] | 陈晓英, 汪建均, 杨世娟. 基于半参数分层贝叶斯建模与优化[J]. 系统工程与电子技术, 2023, 45(5): 1580-1588. |
[3] | 马妍, 汪建均, 冯泽彪. 非正态响应稳健参数设计的贝叶斯建模与优化[J]. 系统工程与电子技术, 2023, 45(3): 921-930. |
[4] | 翟翠红, 汪建均, 冯泽彪. 基于高斯过程模型的多响应稳健参数设计[J]. 系统工程与电子技术, 2021, 43(12): 3683-3693. |
[5] | 冯泽彪, 汪建均. 考虑响应共变特性的多响应稳健参数设计[J]. 系统工程与电子技术, 2019, 41(9): 2048-2057. |
[6] | 杨世娟, 汪建均. 基于分层贝叶斯模型的稳健参数设计[J]. 系统工程与电子技术, 2019, 41(10): 2293-2303. |
[7] | 韩云霞, 马义中, 欧阳林寒, 汪建均, 顾晓光. 模型参数不确定的多响应参数和容差并行设计[J]. 系统工程与电子技术, 2019, 41(1): 131-140. |
[8] | 顾晓光, 马义中, 刘健, 汪建均. 基于单值数据过程能力指数的多元质量特性稳健参数设计[J]. 系统工程与电子技术, 2017, 39(2): 362-368. |
[9] | 张流洋, 马义中, 汪建均, 吴锋. 考虑偏度特征的动态多响应稳健参数设计与优化[J]. 系统工程与电子技术, 2016, 38(2): 339-346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||