系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1950-1963.doi: 10.12305/j.issn.1001-506X.2025.06.23

• 系统工程 • 上一篇    下一篇

基于主动学习的树状高斯过程建模与参数优化

冯泽彪1, 杨旭1, 汪建均2,*   

  1. 1. 南京邮电大学管理学院, 江苏 南京 210003
    2. 南京理工大学经济管理学院, 江苏 南京 210094
  • 收稿日期:2024-09-29 出版日期:2025-06-25 发布日期:2025-07-09
  • 通讯作者: 汪建均
  • 作者简介:冯泽彪 (1988—), 男, 讲师, 博士, 主要研究方向为质量工程、稳健参数设计、计算机试验设计、机器学习
    杨旭 (2002—), 男, 硕士研究生, 主要研究方向为稳健参数设计、机器学习
    汪建均 (1977—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为质量管理与质量工程、工业工程、应用统计学
  • 基金资助:
    国家自然科学基金(72301146);国家自然科学基金(72171118);国家自然科学基金(71931006);全国统计科学研究项目(2024T170430);中国博士后科学基金面上项目(2023M741802);江苏省高校自然科学基金面上项目(23KJB630012)

Modeling and parameter optimization based on active learning treed Gaussian process

Zebiao FENG1, Xu YANG1, Jianjun WANG2,*   

  1. 1. School of Management, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
    2. School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2024-09-29 Online:2025-06-25 Published:2025-07-09
  • Contact: Jianjun WANG

摘要:

针对非平稳响应的稳健参数设计问题, 在树状高斯过程(treed Gaussian process, TGP)建模的框架下, 提出基于主动学习算法的稳健参数优化模型。首先, 综合运用D-optimal和Expected Improvement设计策略, 构建主动学习算法, 以改善设计点的空间填充性能和优化性能。然后, 利用贝叶斯分层建模方法构建模型结构, 以估计输入和输出之间的非平稳函数关系。最后, 利用TGP模型输出, 构建基于质量损失函数的稳健参数优化模型。利用遗传算法(Genetic algorithm, GA)进行全局优化, 以获得最优输入参数设置。仿真结果表明, 所提方法所得最优解具有更小的质量损失和预测偏差, 改善了最优解潜在区域的预测精度, 降低了预测响应的不确定性, 进而提升了非平稳响应稳健优化结果的有效性。

关键词: 非平稳响应, 稳健参数设计, 树状高斯过程模型, 主动学习算法, 质量损失

Abstract:

Under the framework of treed Gaussian process (TGP) modeling, a robust parameter optimi-zation model based on an active learning algorithm for robust parameter design problems with non-stationary responses is proposed. Firstly, by comprehensively applying the D-optimal and Expected Improvement design strategies, an active learning algorithm is constructed to improve the spatial filling performance and optimization performance of the design points. Secondly, the Bayesian hierarchical modeling approach is used to construct the model structure to estimate the non-stationary functional relationship between inputs and outputs. Finally, based on the output of the TGP model, a robust parameter optimization model is constructed based on quality loss function. The genetic algorithm (GA) is used for global optimization to obtain the optimal input parameter settings. The simulation results show that the optimal solution obtained by the proposed method has a smaller quality loss and prediction bias. Therefore, the proposed method improves the prediction accuracy in the potential optimal solution region, reduces the uncertainty of the predicted response, and further enhances the effectiveness of robust optimization results for non-stationary responses.

Key words: non-stationary response, robust parameter design, treed Gaussian process (TGP) model, active learning algorithm, quality loss

中图分类号: