系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1739-1745.doi: 10.12305/j.issn.1001-506X.2025.06.02

• 电子技术 • 上一篇    下一篇

最优算术平均融合及其在非同视域场景的应用

薛昱, 冯西安   

  1. 西北工业大学航海学院, 陕西 西安 710072
  • 收稿日期:2024-12-05 出版日期:2025-06-25 发布日期:2025-07-25
  • 通讯作者: 冯西安
  • 作者简介:薛昱 (1994—), 男, 博士研究生, 主要研究方向为多源信息融合、随机有限集理论、分布式多目标跟踪
    冯西安 (1962—), 男, 教授, 博士, 主要研究方向为水下信号处理、水下融合跟踪
  • 基金资助:
    国家自然科学基金面上项目(62071386)

Optimal arithmetic average fusion and its application in different fields of view

Yu XUE, Xi'an FENG   

  1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2024-12-05 Online:2025-06-25 Published:2025-07-25
  • Contact: Xi'an FENG

摘要:

为了在视域(field of view, FOV)不同的条件下实现对数量时变的不确定目标的最优跟踪, 提出一种高斯混合概率假设密度(Gaussian mixture probability hypothesis density, GM-PHD)滤波器的去相关算术平均(arithmetic average, AA)融合算法。鉴于多目标AA融合被分解为多组单目标分量的合并, 先通过重构贝叶斯融合推导出最优去相关估计融合, 后将其用作单目标分量的合并方法。由于推导的去相关估计融合需要先验估计, 设计了一个包含主滤波器的分层结构, 以自动提供需要的先验估计。为了解决不同FOV导致的目标势低估问题, 融合节点利用FOV补偿单目标分量的权重。仿真结果证实了提出的算法在各种场景中的最优性, 提升了多目标跟踪的精度。

关键词: 概率假设密度滤波器, 去相关, 贝叶斯融合, 分层结构, 主滤波器

Abstract:

A decorrelation arithmetic average (AA) fusion algorithm of Gaussian mixture probability hypothesis density (GM-PHD) filters is proposed to achieve optimal tracking of a time-varying number of uncertain targets within different field of view (FOV). Given that the multi-target AA fusion is decomposed into multiple groups of single-target component merging by association operation, optimal decorrelation estimation fusion is firstly derived by reshaping the Bayesian fusion and then is applied as the merging method of single-target components. Since the derived decorrelation estimation fusion requires prior estimates, a hierarchical structure involving a master filter dedicated to automatically providing prior estimates is designed. To address the underestimated target cardinality arising from different FOV, the fusion node compensates for weight of single-target components according to FOV. Simulation results demonstrate the proposed algorithm's optimality in various scenarios, which improves the multi-target tracking accuracy.

Key words: probability hypothesis density (PHD) filter, decorrelation, Bayesian fusion, hierarchical structure, master filter

中图分类号: