系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (5): 1414-1420.doi: 10.12305/j.issn.1001-506X.2025.05.04
• 电子技术 • 上一篇
马策一, 魏文轩, 于泽, 王迎节
收稿日期:
2024-03-26
出版日期:
2025-06-11
发布日期:
2025-06-18
通讯作者:
马策一
作者简介:
马策一 (1992—), 男, 工程师, 博士, 主要研究方向为电磁兼容试验、电磁兼容仿真、数值计算、电磁环境效应Ceyi MA, Wenxuan WEI, Ze YU, Yingjie WANG
Received:
2024-03-26
Online:
2025-06-11
Published:
2025-06-18
Contact:
Ceyi MA
摘要:
为了在产品设计阶段预测设备电场辐射发射试验超标风险, 提出一种基于多端口网络理论的电场辐射发射试验快速仿真方法。所提方法将标准试验定义为一种多端口网络, 通过计算端口与端口之间散射参数, 快速得到发射和接收之间的耦合关系。针对试验环境仿真精度开展实测验证, 结果表明连续波及脉冲激励时的平均误差分别在2 dB和6 dB以内, 说明了所提方法的有效性。与传统仿真方法相比, 所提方法的精度与效率有明显改善。因此, 基于多端口网络的电场辐射发射试验快速仿真方法对于预测和评估设备电场辐射发射试验超标风险具有重要的实际意义。
中图分类号:
马策一, 魏文轩, 于泽, 王迎节. 基于多端口网络的电场辐射发射试验仿真方法[J]. 系统工程与电子技术, 2025, 47(5): 1414-1420.
Ceyi MA, Wenxuan WEI, Ze YU, Yingjie WANG. Simulation method for electric field radiation emission test based on multi-port network[J]. Systems Engineering and Electronics, 2025, 47(5): 1414-1420.
1 |
陈凯柏, 高敏, 周晓东, 等. 毫米波探测器的超宽带耦合特性[J]. 系统工程与电子技术, 2022, 44 (12): 3641- 3651.
doi: 10.12305/j.issn.1001-506X.2022.12.07 |
CHEN K B , GAO M , ZHOU X D , et al. Ultra-wideband coupling characteristics of millimeter wave detector[J]. Systems Engineering and Electronics, 2022, 44 (12): 3641- 3651.
doi: 10.12305/j.issn.1001-506X.2022.12.07 |
|
2 |
JIA Z L , ZHANG H H , DING D Z , et al. Time-domain shielding effectiveness analysis based on DGTD method accelerated by local time-stepping and parallel techniques[J]. IEEE Trans.on Electromagnetic Compatibility, 2023, 65 (3): 900- 911.
doi: 10.1109/TEMC.2023.3239162 |
3 | SCOTT G D , POOLEY M A , COTTS B R T . Numerical and analytical modeling of electromagnetic fields from offshore power distribution cables[J]. IEEE Trans.on Magnetics, 2023, 59 (5): 1- 5. |
4 |
ZAIKIN D I , MIKKELSEN S L , JONASEN S , et al. Prediction of radiated emissions from a fuel cell power converter by measuring the common-mode current in the attached cable[J]. IEEE Access, 2023, 11, 930- 949.
doi: 10.1109/ACCESS.2022.3233543 |
5 |
孔繁, 盛卫星, 马晓峰, 等. 高速背板互连的信号完整性仿真方法[J]. 系统工程与电子技术, 2014, 36 (10): 2082- 2088.
doi: 10.3969/j.issn.1001-506X.2014.10.31 |
KONG F , SHENG W X , MA X F , et al. An efficient method for analyzing crosstalk of coaxial cable bundles[J]. Systems Engineering and Electronics, 2014, 36 (10): 2082- 2088.
doi: 10.3969/j.issn.1001-506X.2014.10.31 |
|
6 |
RASM S , ANDRIEU G , REINEIX A , et al. Virtual signal integrity test on shielded/unshielded twisted-wire pairs in reverberation chambers under realistic industrial constraints[J]. IEEE Trans.on Electromagnetic Compatibility, 2023, 65 (1): 28- 38.
doi: 10.1109/TEMC.2022.3217190 |
7 |
WAQAR M , CHANG Y B , KWON J , et al. DDR4 ball grid array package intermittent fracture effect on signal integrity[J]. IEEE Trans.on Components, Packaging and Manufacturing Technology, 2023, 13 (1): 70- 78.
doi: 10.1109/TCPMT.2023.3239408 |
8 |
SINGH S , DWIZA B , JAYARAMAN K , et al. Novel single-stage and two-stage integrated magnetic chokes for DC-side EMI filter in motor drive applications[J]. IEEE Trans.on Power Electronics, 2024, 39 (1): 570- 581.
doi: 10.1109/TPEL.2023.3321635 |
9 |
PEI X , SHAN Y , PEI J , et al. Submodule switching-state based EMI modeling and mixed-mode EMI phenomenon in MMC[J]. IEEE Trans.on Power Electronics, 2023, 38 (2): 1831- 1843.
doi: 10.1109/TPEL.2022.3214990 |
10 |
PASHAEI M , HASANISADI M , TAHAMI F . Comprehensive conducted emission analysis of the three-phase and single-phase LLC resonant converters for EV application[J]. IEEE Trans.on Electromagnetic Compatibility, 2023, 65 (5): 1556- 1564.
doi: 10.1109/TEMC.2023.3280362 |
11 |
SU D L , XIE S G , CHEN A X , et al. Basic emission waveform theory: a novel interpretation and source identification method for electromagnetic emission of complex systems[J]. IEEE Trans.on Electromagnetic Compatibility, 2018, 60 (5): 1330- 1339.
doi: 10.1109/TEMC.2017.2771454 |
12 |
ZHANG S Q , IOKIBE K , TOYOTA Y . Conducted noise prediction for DC-DC converter by noise source model accounting for switching fluctuation[J]. IEEE Trans.on Electromagnetic Compatibility, 2023, 65 (3): 924- 934.
doi: 10.1109/TEMC.2023.3236674 |
13 |
WANG Y , WEN H A , HOU X Z , et al. Comparison of diffe-rential-mode and mixed-mode conducted emission for household appliances in power-line communication system[J]. IEEE Trans.on Electromagnetic Compatibility, 2017, 59 (6): 2023- 2028.
doi: 10.1109/TEMC.2016.2607754 |
14 |
PENUGONDA S , BAI S Q , SANPHUANG V , et al. Three-terminal noise source extraction from a Qi-based wireless power transfer system for predicting conducted emissions[J]. IEEE Trans.on Electromagnetic Compatibility, 2023, 65 (5): 1548- 1555.
doi: 10.1109/TEMC.2023.3296639 |
15 |
REZAEI H , SØRENSEN M , HUANG W , et al. Analyzing the influence of imbalanced two-or three-wire VHF LISN on radiated emissions from AC cables[J]. IEEE Trans.on Electromagnetic Compatibility, 2022, 64 (2): 327- 337.
doi: 10.1109/TEMC.2021.3111136 |
16 |
LU H , CIBULKA M J , JONES C E , et al. High directivity reference RF source and its radiated emission model for site correlation[J]. IEEE Trans.on Electromagnetic Compatibility, 2020, 62 (4): 1619- 1627.
doi: 10.1109/TEMC.2020.3003309 |
17 |
MURUGAN R , CHEN J , TRIPATHI A , et al. Multiscale EMC modeling, simulation, and validation of a synchronous step-down DC-DC converter[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2023, 8, 269- 280.
doi: 10.1109/JMMCT.2023.3276358 |
18 |
YAO C Y , LIAO W J . An estimation method for EMI radiated emissions using measured source voltages[J]. IEEE Trans.on Electromagnetic Compatibility, 2023, 65 (3): 770- 779.
doi: 10.1109/TEMC.2023.3245140 |
19 |
郑红星, 萧剑平, 曹桂珍, 等. 小型战术导弹电磁兼容性测试与仿真分析研究[J]. 弹箭与制导学报, 2013, 33 (1): 44- 48.
doi: 10.3969/j.issn.1673-9728.2013.01.011 |
ZHENG H X , XIAO J P , CAO G Z , et al. The electromagnetic compatibility testing and simulation analysis research of small tactical missiles[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33 (1): 44- 48.
doi: 10.3969/j.issn.1673-9728.2013.01.011 |
|
20 |
GABRIADZE G , CHIQOVANI G , GHEONJIAN A , et al. Enhanced PEEC model based on automatic voronoi decomposition of triangular meshes[J]. IEEE Trans.on Electromagnetic Compatibility, 2020, 62 (5): 2196- 2208.
doi: 10.1109/TEMC.2019.2956586 |
21 |
ZHANG J , POMMERENKE D , FAN J . Determining equivalent dipoles using a hybrid source-reconstruction method for characterizing emissions from integrated circuits[J]. IEEE Trans.on Electromagnetic Compatibility, 2017, 59 (2): 567- 575.
doi: 10.1109/TEMC.2016.2638758 |
22 |
SHINDE S , MASUDA K , SHEN G Y , et al. Radiated EMI estimation from DC-DC converters with attached cables based on terminal equivalent circuit modeling[J]. IEEE Trans.on Electromagnetic Compatibility, 2018, 60 (6): 1769- 1776.
doi: 10.1109/TEMC.2017.2782659 |
23 |
REDDY V S , KRALICEK P , HANSEN J A . A novel segmentation approach for modeling of radiated emission and immunity test setups[J]. IEEE Trans.on Electromagnetic Compatibility, 2017, 59 (6): 1781- 1790.
doi: 10.1109/TEMC.2017.2699480 |
24 |
JIA J , RINAS D , FREI S . Predicting the radiated emissions of automotive systems according to CISPR 25 using current scan methods[J]. IEEE Trans.on Electromagnetic Compatibility, 2016, 58 (2): 409- 418.
doi: 10.1109/TEMC.2015.2511185 |
25 |
YI Z Q , ZOU J , TIAN X X , et al. A multicomponent iterative method for efficient source reconstruction based on magnitude-only and single-plane near-field scanning[J]. IEEE Trans.on Electromagnetic Compatibility, 2023, 65 (3): 879- 889.
doi: 10.1109/TEMC.2023.3247681 |
26 |
SONG T H , WEI X C , XIAO Q H , et al. A source reconstruction method for unknown EMI sources inside a shielding enclosure based on magnitude-only near-field scanning[J]. IEEE Trans.on Electromagnetic Compatibility, 2024, 66 (1): 247- 255.
doi: 10.1109/TEMC.2023.3325371 |
27 |
HUANG X , LIU Q F , CHEN H , et al. A new hybrid equivalent modeling method of low-frequency radiation source based on GS and JADE algorithms and phaseless near-field data[J]. IEEE Trans.on Electromagnetic Compatibility, 2024, 66 (3): 917- 927.
doi: 10.1109/TEMC.2024.3359259 |
28 |
HE X , HUBING T H . A closed-form expression for estimating maximum radiated emissions from a heatsink on a printed circuit board[J]. IEEE Trans.on Electromagnetic Compatibility, 2012, 54 (1): 205- 211.
doi: 10.1109/TEMC.2011.2169248 |
29 |
BAKLEZOS A T , NIKOLOPOULOS C D , KATSOURIS A G , et al. Electromagnetic emission modeling in case of shielded cabling with respect to the ground dielectric properties[J]. IEEE Trans.on Electromagnetic Compatibility, 2016, 58 (6): 1694- 1700.
doi: 10.1109/TEMC.2016.2588583 |
30 | 刘恩博, 朱俊颖, 王海星, 等. 开关电源RE102仿真与实测[J]. 安全与电磁兼容, 2019 (4): 63- 66. |
LIU E B , ZHU J Y , WANG H X , et al. RE102 radiation si-mulation and measurement of switching mode power supply[J]. Safety & EMC, 2019 (4): 63- 66. | |
31 |
CAROBBI F M C . A lumped model of the rod antenna setup adopted for military and automotive testing[J]. IEEE Trans.on Electromagnetic Compatibility, 2019, 61 (4): 1289- 1296.
doi: 10.1109/TEMC.2019.2902628 |
32 | DU Y X, XU W T, XIONG Y, et al. Research on the influence of ship device IP code on RE102[C]//Proc. of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, 2022. |
33 |
FREDERUC L , RENAUD D , JOSSELIN D , et al. Identification and study of influential parameters in CISPR25 radiated emissions test setup by inter laboratory measurements and 3-D simulation combined analysis[J]. IEEE Trans.on Electromagnetic Compatibility, 2016, 58 (5): 1398- 1406.
doi: 10.1109/TEMC.2016.2562179 |
34 | 胡广, 万发雨. 国军标151B RE102低频段测试方法分析与研究[J]. 电子测量与仪器学报, 2017, 31 (2): 185- 192. |
HU G , WAN F Y . Analysis and research of GJB151B RE102 low frequency test method[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31 (2): 185- 192. |
[1] | 朱峰, 杨啸, 蒋倩倩, 王宇轩. 磁浮列车电弧辐射特性及对航向信标影响分析[J]. 系统工程与电子技术, 2022, 44(7): 2096-2103. |
[2] | 刘永征, 刘学斌, 刘文龙, 张昕, 陈小来. 高光谱遥感高速成像电路电磁兼容设计[J]. 系统工程与电子技术, 2021, 43(1): 26-32. |
[3] | 张玉廷, 肖淼, 张亮, 周怀安, 吕争. 基于近场扫描的移动通信卫星EMC性能评估[J]. 系统工程与电子技术, 2020, 42(9): 1897-1902. |
[4] | 卢中昊, 徐军, 林铭团. 电磁辐射发射现场测试中基于空域对消的背景电磁干扰抑制方法[J]. 系统工程与电子技术, 2020, 42(7): 1433-1438. |
[5] | 卢中昊, 林铭团, 刘继斌, 刘培国. 基于阵列信号处理的新型虚拟暗室测试方法[J]. 系统工程与电子技术, 2013, 35(10): 2021-2026. |
[6] | 秦德淳, 苏东林, 武南开, 吴龙刚. 基于谐振效应的电子起爆装置电磁敏感性分析方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2005-2009. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||