| 1 |
MULIMANI M, VENKATESH S, KOOLAGUDI S G. Acoustic event and scene classification: a review[J]. SN Computer Science, 2024, 6 (1): 54.
doi: 10.1007/s42979-024-03592-9
|
| 2 |
HUANG R, XIE Y, JIANG P X. Local time-frequency feature fusion using cross-attention for acoustic scene classification[J]. Symmetry, 2024, 17 (1): 49.
doi: 10.3390/sym17010049
|
| 3 |
KHAN S, ULLAH I, ALI F, et al. Deep learning-based marine big data fusion for ocean environment monitoring: towards shape optimization and salient objects detection[J]. Frontiers in Marine Science, 2023, 9, 1094915.
doi: 10.3389/fmars.2022.1094915
|
| 4 |
刘立芳, 杨海霞, 齐小刚. 基于线性判别分析的时频域特征提取算法[J]. 系统工程与电子技术, 2019, 41 (10): 2184- 2190.
|
|
LIU L F, YANG H X, QI X G. Time-frequency domain feature extraction algorithm based on linear discriminant analysis[J]. Systems Engineering and Electronics, 2019, 41 (10): 2184- 2190.
|
| 5 |
LQBAL U, LI D L, DU Z Z, et al. Augmenting aquaculture efficiency through involutional neural networks and self-attention for oplegnathus punctatus feeding intensity classification from log mel spectrograms[J]. Animals, 2024, 14 (11): 1690.
doi: 10.3390/ani14111690
|
| 6 |
PAUL B, PHADIKAR S, BERA S, et al. Isolated word recognition based on a hyper-tuned cross-validated CNN-BiLSTM from Mel frequency cepstral coefficients[J]. Multimedia Tools and Applications, 2025, 84, 17309- 17328.
|
| 7 |
HONG Z, LYU T Q, ZHAO D, et al. Improvement of pipeline leak detection method: integration of spectral entropy and sample entropy for better description of complexity features[J]. Applied Acoustics, 2025, 231, 110458.
doi: 10.1016/j.apacoust.2024.110458
|
| 8 |
吕勤哲, 全英汇, 沙明辉, 等. 基于集成深度学习的有源干扰智能分类[J]. 系统工程与电子技术, 2022, 44 (12): 3595- 3602.
|
|
LYU Q Z, QUAN Y H, SHA M H, et al. Intelligent classification of active jamming based on integrated deep learning[J]. Systems Engineering and Electronics, 2022, 44 (12): 3595- 3602.
|
| 9 |
ZHANG T, LIANG J H, DING B Y. Acoustic scene classification using deep CNN with fine-resolution feature[J]. Expert Systems with Applications, 2020, 143, 113067.
doi: 10.1016/j.eswa.2019.113067
|
| 10 |
RYBCZAK M, KOZAKIEWICZ K. Deep machine learning of mobileNet, efficient, and Inception models[J]. Algorithms, 2024, 17 (3): 96.
doi: 10.3390/a17030096
|
| 11 |
WANG H L, ZOU Y X, CHONG D D, et al. Environmental sound classification with parallel temporal-spectral attention[EB/OL]. [2025-04-10]. https://arxiv.org/abs/1912.06808.
|
| 12 |
SPOORTHY V, KOOLAGUDI S G. Bi-level acoustic scene classification using lightweight deep learning model[J]. Circuits, Systems, and Signal Processing, 2024, 43 (1): 388- 407.
doi: 10.1007/s00034-023-02478-0
|
| 13 |
XIE J, ZHU M Y. Investigation of acoustic and visual features for acoustic scene classification[J]. Expert Systems with Applications, 2019, 126, 20- 29.
doi: 10.1016/j.eswa.2019.01.085
|
| 14 |
XIAO B, SHI D Y, BI X L, et al. CS-CoLBP: cross-scale co-occurrence local binary pattern for image classification[J]. International Journal of Computer Vision, 2025, 133, 2327- 2344.
doi: 10.1007/s11263-024-02297-z
|
| 15 |
SHU H M, DAWOD A Y, DONG L J. Recognition and classification of microseismic event waveforms based on histogram of oriented gradients and shallow machine learning approach[J]. Journal of Applied Geophysics, 2024, 230, 105551.
doi: 10.1016/j.jappgeo.2024.105551
|
| 16 |
WANG M, CHEN C X, XIE Y, et al. Audio-visual scene classification using transfer learning and hybrid fusion strategy[R]. Barcelona: Detection and Classification of Acoustic Scenes and Events Challenge, 2021.
|
| 17 |
LIU Y, NEOPHYTOU A, SENGUPTA S, et al. Cross-modal spectrum transformation network for acoustic scene classification[C]// Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2021: 830−834.
|
| 18 |
常月, 侯元波, 谭奕舟, 等. 基于自注意力机制的多模态场景分类[J]. 复旦学报(自然科学版), 2023, 62 (1): 46- 52.
|
|
CHANG Y, HOU Y B, TAN Y Z, et al. Multi-modal scene classification based on self-attention mechanism[J]. Journal of Fudan University (Natural Science), 2023, 62 (1): 46- 52.
|
| 19 |
GONG R, ZHANG Y, ZHANG Y H, et al. Demsasa: micro-video scene classification based on denoising multi-shots association self-attention[J]. Pattern Analysis and Applications, 2024, 27 (4): 155.
doi: 10.1007/s10044-024-01378-6
|
| 20 |
黄天阳, 侯元波, 李圣辰, 等. 互编码器辅助视频的多模态场景分类[J]. 南京邮电大学学报(自然科学版), 2023, 43 (1): 104- 110.
|
|
HUANG T Y, HOU Y B, LI S C, et al. Multimodal scene classification for encoder-assisted videos[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2023, 43 (1): 104- 110.
|
| 21 |
ZHOU L G, QI X N, HU J J, et al. Feature pyramid attention network for audio-visual scene classification[J]. CAAI Transactions on Intelligence Technology, 2025, 10(2): 359−374.
|
| 22 |
GEMMEKE J F, ELLIS D P W, FREEDMAN D, et al. Audio set: an ontology and human-labeled dataset for audio events[C]// Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2017: 776−780.
|
| 23 |
CRAMER A L, WU H H, SALAMON J, et al. Look, listen, and learn more: design choices for deep audio embeddings[C]// Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 3852−3856.
|
| 24 |
MASCARENHAS S, AGARWAL M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for image classification[C]//Proc. of the International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications, 2021.
|
| 25 |
HOU Y B, TAN Y Z, CHANG Y, et al. CNN-based dual-stream network for audio-visual scene classification[R]. Barcelona: Detection and Classification of Acoustic Scenes and Events Challenge, 2021.
|
| 26 |
WANG S S, MESAROS A, HEITTOLA T, et al. A curated dataset of urban scenes for audio-visual scene analysis[C]// Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2021: 626−630.
|
| 27 |
SHAHADE A K, WALSE K H, THAKARE V M. Deep learning approach-based hybrid fine-tuned Smith algorithm with Adam optimiser for multilingual opinion mining[J]. International Journal of Computer Applications in Technology, 2023, 73 (1): 50- 65.
doi: 10.1504/IJCAT.2023.134080
|
| 28 |
SHIM J W. Enhancing cross entropy with a linearly adaptive loss function for optimized classification performance[J]. Scientific Reports, 2024, 14 (1): 27405.
doi: 10.1038/s41598-024-78858-6
|
| 29 |
ZHOU L G, QI X N, HU J J, et al. Attentional graph convolutional network for structure-aware audiovisual scene classification[J]. IEEE Trans. on Instrumentation and Measurement, 2023, 72, 9600515.
|
| 30 |
WANG Z Q, WU Y K, WANG Y F, et al. Audio-visual scene recognition using attention-based graph convolutional model[J]. Multimedia Tools and Applications, 2025, 84, 14915- 14939.
|