| 1 | 
																						 
											   WEI W ,  MENDEL J .  Maximum-likelihood classification for digi- tal amplitude-phase modulations[J]. IEEE Trans.on Communications, 2000, 48 (2): 189- 193. 
											 												 
																									doi: 10.1109/26.823550
																																			 											 | 
										
																													
																						| 2 | 
																						 
											   HAMEED F ,  DOBRE O ,  POPESCU D .  On the likelihood-based approach to modulation classification[J]. IEEE Trans.on Wireless Communications, 2009, 8 (12): 5884- 5892. 
											 												 
																									doi: 10.1109/TWC.2009.12.080883
																																			 											 | 
										
																													
																						| 3 | 
																						 
											   RAMEZANI A ,  KIM I ,  KIM D , et al.  Likelihood-based modulation classification for multiple-antenna receiver[J]. IEEE Trans.on Communications, 2013, 61 (9): 3816- 3829. 
											 												 
																									doi: 10.1109/TCOMM.2013.073113.121001
																																			 											 | 
										
																													
																						| 4 | 
																						 
											   HAZAR M ,  ODABASIOGLU N ,  ENSARI T , et al.  Perfor-mance analysis and improvement of machine learning algorithms for automatic modulation recognition over Rayleigh fading channels[J]. Neural Computer, 2018, 29 (9): 351- 360. 
											 												 
																									doi: 10.1007/s00521-017-3040-6
																																			 											 | 
										
																													
																						| 5 | 
																						 
											   HAN L B ,  GAO F F ,  LI Z , et al.  Low complexity automatic modulation classification based on order-statistics[J]. IEEE Trans.on Wireless Communications, 2017, 16 (1): 400- 411. 
											 												 
																									doi: 10.1109/TWC.2016.2623716
																																			 											 | 
										
																													
																						| 6 | 
																						 
											  袁莉芬, 宁暑光, 何怡刚, 等.  基于高阶累积量特征学习的调制识别方法[J]. 系统工程与电子技术, 2019, 41 (9): 2122- 2131. 
											 											 | 
										
																													
																						 | 
																						 
											   YUAN L F ,  NING S G ,  HE Y G , et al.  Modulation recognition method based on high-order cumulant feature learning[J]. Systems Engineering and Electronics, 2019, 41 (9): 2122- 2131. 
											 											 | 
										
																													
																						| 7 | 
																						 
											   XIE W W ,  HU S ,  YU C , et al.  Deep learning in digital modulation recognition using high order cumulants[J]. IEEE Access, 2019, 7, 63760- 63766. 
											 												 
																									doi: 10.1109/ACCESS.2019.2916833
																																			 											 | 
										
																													
																						| 8 | 
																						 
											 JIN S S, LIN Y, WANG H. Automatic modulation recognition of digital signals based on Fisherface[C]//Proc. of the IEEE International Conference on Software Quality, Reliability and Security Companion, 2017: 216-220.
											 											 | 
										
																													
																						| 9 | 
																						 
											 ZHAO H N, ZHOU Y Q, SUN B, et al. Cyclic spectrum based intelligent modulation recognition with machine learning[C]//Proc. of the 10th International Conference on Wireless Communications and Signal Processing, 2018.
											 											 | 
										
																													
																						| 10 | 
																						 
											   ZHAO Y L ,  YU Z M ,  WAN Z Q ,  et at .  Low complexity OSNR monitoring and modulation format identification based on binarized neural networks[J]. Journal of Lightwave Technology, 2020, 38 (6): 1314- 1322. 
											 												 
																									doi: 10.1109/JLT.2020.2973232
																																			 											 | 
										
																													
																						| 11 | 
																						 
											   QU Z Y ,  HOU C F ,  HOU C B , et al.  Radar signal intra-pulse modulation recognition based on convolutional neural network and deep Q-Learning network[J]. IEEE Access, 2020, 8, 49125- 49136. 
											 												 
																									doi: 10.1109/ACCESS.2020.2980363
																																			 											 | 
										
																													
																						| 12 | 
																						 
											   ZHANG J ,  LI Y ,  YIN J P .  Modulation classification method for frequency modulation signals based on the time-frequency distribution and CNN[J]. IET Radar, Sonar & Navigation, 2017, 12 (2): 244- 249.
											 											 | 
										
																													
																						| 13 | 
																						 
											 BAI J L, GAO L, GAO J P, et al. A new radar signal modulation recognition algorithm based on time-frequency transform[C]// Proc. of the IEEE 4th International Conference on Signal and Image Processing, 2019: 21-25.
											 											 | 
										
																													
																						| 14 | 
																						 
											   ZHANG M ,  DIAO M ,  GUO L M .  Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082. 
											 												 
																									doi: 10.1109/ACCESS.2017.2716191
																																			 											 | 
										
																													
																						| 15 | 
																						 
											  李红光, 郭英, 眭萍, 等.  基于时频特征的卷积神经网络跳频调制识别[J]. 浙江大学学报(工学版), 2020, 54 (10): 1945- 1954. 
											 											 | 
										
																													
																						 | 
																						 
											   LI H G ,  GUO Y ,  MU P , et al.  Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics[J]. Journal of Zhejiang University (Engineering Science), 2020, 54 (10): 1945- 1954. 
											 											 | 
										
																													
																						| 16 | 
																						 
											 GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proc. of the International Conference on Neural Information Processing Systems, 2014: 2672-2680.
											 											 | 
										
																													
																						| 17 | 
																						 
											   CHI J N ,  WU C D ,  YU X S , et al.  Single low-dose CT image denoising using a generative adversarial network with modified U-net generator and multi-level discriminator[J]. IEEE Access, 2020, 8, 133470- 133487. 
											 												 
																									doi: 10.1109/ACCESS.2020.3006512
																																			 											 | 
										
																													
																						| 18 | 
																						 
											   LI D L ,  GONG S H ,  NIU S L , et al.  Image blind denoising using a generative adversarial network for LED chip visual locali- zation[J]. IEEE Sensors Journal, 2020, 20 (12): 6582- 6595. 
											 												 
																									doi: 10.1109/JSEN.2020.2976576
																																			 											 | 
										
																													
																						| 19 | 
																						 
											   ZENG Y ,  ZHANG M ,  HAN F , et al.  Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8 (3): 929- 932. 
											 												 
																									doi: 10.1109/LWC.2019.2900247
																																			 											 | 
										
																													
																						| 20 | 
																						 
											 ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2472-2481.
											 											 | 
										
																													
																						| 21 | 
																						 
											 HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
											 											 |