系统工程与电子技术 ›› 2019, Vol. 41 ›› Issue (1): 112-117.doi: 10.3969/j.issn.1001-506X.2019.01.16

• 系统工程 • 上一篇    下一篇

基于稀疏降噪自编码神经网络的通用航空风险预测

于思璇, 王华伟   

  1. 南京航空航天大学民航学院,江苏 南京 211106
  • 出版日期:2018-12-29 发布日期:2018-12-27

Risk forecasting in general aviation based on sparse de-noising auto-encoder neural network

YU Sixuan, WANG Huawei   

  1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Online:2018-12-29 Published:2018-12-27

摘要:

近年来通用航空发展迅速,由此引发的安全问题日益引起重视。但是由于通用航空器种类繁多,样本之间的差异性较大,传统的统计分析技术在通用航空风险预测方面就显得无能为力。提出一种基于稀疏降噪自编码神经网络的通用航空风险预测方法,稀疏降噪自编码模型(sparse de-noising auto-encoder,SDAE)可以学习相对稀疏简明的数据特征,更好地表达输入数据。利用收集到从2012年1月至2015年12月共48个月各个不同事件发生原因的其他不安全事件总数量,建立民航事故征候万架次率的神经网络预测模型,将其他不安全事件的发生与事故征候联系起来。通过实例说明,构建的SDAE模型可以根据输入的其他不安全事件的数量对当月的事故征候万架次率做出较为准确的预测。

Abstract: General aviation has developed rapidly in recent years, but the resulting safety problems attracted increasing attention. However, due to the wide variety of general aircraft and great difference between the samples, the traditional statistical analysis technology in general aviation risk forecast seems powerless. In this paper, a new prediction method based on neural network of sparse de-noising auto-encoder (SDAE) is proposed. SDAE can learn relatively sparse and concise data features and express input data better. By collecting the total number of other unsafe events from the time of January 2012 to December 2015 for 48 months, the neural network forecasting model of the civil incident rate is established to associate the occurrence of other unsafe incidents with the incident symptom. Examples show that the SDAE model can accurately predict the number of incidents in the month based on the number of other unsafe events.