李方伟, 张新跃, 朱江, 黄卿
LI Fangwei, ZHANG Xinyue, ZHU Jiang, HUANG Qing
摘要:
为了提高径向基函数(radical basis function, RBF)神经网络对网络安全态势的预测精度,提出了一种基于吸引力传播(affinity propagation, AP)聚类和差分进化(differential evolution, DE)优化RBF神经网络的算法。首先,利用AP聚类算法对样本数据进行划分聚类,从而获得RBF的中心和网络的隐含层节点数;其次,利用AP聚类得出种群差异度,自适应地改变DE算法的缩放因子和交叉概率,对RBF的宽度和连接权值进行优化;同时为了避免陷入局部最优以及跳出局部极值点,对每一代种群的精英个体和种群差异度中心进行混沌搜索。通过仿真实验表明,此算法在泛化能力增强的同时,对网络安全态势也达到了较高的预测精度。