王海军1,2, 葛红娟1
WANG Hai-jun1,2, GE Hong-juan1
摘要:
针对传统跟踪算法不能在复杂场景下进行有效跟踪的问题,提出一种基于L0正则化增量正交投影非负矩阵分解(incremental orthogonal projective nonnegative matrix factorization,IOPNMF)的目标跟踪算法。在粒子滤波框架下采用IOPNMF算法在线获得跟踪目标基于部分的表示以构建模板矩阵,然后将每帧中的候选样本建立基于模板矩阵的线性表示,对表示系数进行L0正则化约束,并提出快速数值解法,同时引入粒子筛选机制,加快跟踪速度。实验结果表明,新算法能够解决跟踪过程中出现的遮挡、光照变化、运动模糊等影响跟踪性能的因素,具有较高的平均覆盖率和较低的平均中心点误差。