1 |
ANGEVAIN J, FONSECA N, SCHOBERT D, et al. Multibeam reflector antennas for space applications: current trends and future perspectives in Europe[C]//Proc.of the 12th European Conference on Antennas and Propagation, 2018: 1-5.
|
2 |
IUPIKOV O A , IVASHINA M V , SKOU N , et al. Multibeam focal plane arrays with digital beamforming for high precision space-borne ocean remote sensing[J]. IEEE Trans.on Antennas and Propagation, 2018, 66 (2): 737- 748.
doi: 10.1109/TAP.2017.2763174
|
3 |
LIU L, GRAINGE K, NAVARRINI A. Phased arrays for reflector observing systems and its upgrade[C]//Proc.of the 2nd URSI Atlantic Radio Science Meeting, 2018: 1-4.
|
4 |
ROHRDANTZ B , JASCHKE T , REUSCHEL T , et al. An electronically scannable reflector antenna using a planar active array feed at Ka-band[J]. IEEE Trans.on Microwave Theory and Techniques, 2017, 65 (5): 1650- 1661.
doi: 10.1109/TMTT.2017.2663402
|
5 |
HENLEY M , POUR M . Reconfigurable displaced phase center reflector antennas with focal plane arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (6): 1298- 1302.
doi: 10.1109/LAWP.2019.2916043
|
6 |
LIU L, GRAINGE K. Realization of phased arrays for reflector observing systems[C]//Proc.of the General Assembly and Scientific Symposium of the International Union of Radio Science, 2017: 1-4.
|
7 |
HUT B, BRINK R H, CAPPELLEN W A. Status update on the system validation of APERTIF, the phased array feed system for the westerbork synthesis radio telescope[C]//Proc.of the 11th European Conference on Antennas and Propagation, 2017: 1960-1961.
|
8 |
YOO S, CHOO H. Beamforming characteristics of a phased array reflector using a log periodic dipole antenna as an array element[C]//Proc.of the International Symposium on Antennas and Propagation, 2018: 1-2.
|
9 |
SHAW R D. Phased array feed development for ASKAP with the benefit of hindsight[C]//Proc.of the 11th European Conference on Antennas and Propagation, 2017: 3832-3836.
|
10 |
CAO H L, CHEN Z J, TAO L, et al. A novel method of direction of arrival estimation for large parabolic reflector antenna[C]//Proc.of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017: 567-568.
|
11 |
SAKA B, KADERLI A. Direction of arrival estimation and adaptive nulling in array-fed reflectors[C]//Proc.of the Melecon 9th Mediterranean Electro Technical Conference, 1998: 274-277.
|
12 |
YUAN Q W , CHEN Q , SAWAYA K . Accurate DOA estimation using array antenna with arbitrary geometry[J]. IEEE Trans.on Antennas and Propagation, 2005, 53 (4): 1352- 1357.
doi: 10.1109/TAP.2005.844409
|
13 |
DONG F Y, DONG Q, YAN M J, et al. DOA estimation of fast moving target in accelerated scene[C]//Proc.of the IEEE International Conference on Signal Processing, Communications and Computing, 2017: 1-4.
|
14 |
LI J F , LI Y X , ZHANG X F . Two-dimensional off-grid DOA estimation using unfolded parallel coprime array[J]. IEEE Communications Letters, 2018, 22 (12): 2495- 2498.
doi: 10.1109/LCOMM.2018.2872955
|
15 |
SHI J P, HU G P, ZHANG X F, et al. Sum and difference coarrays based 2-D DOA estimation with co-prime parallel arrays[C]//Proc.of the 9th International Conference on Wireless Communications and Signal Processing, 2017: 1-4.
|
16 |
CHEN Y L, LIN C C. Estimating direction of arrival for coherent signals by using projection subspace without source number information[C]//Proc.of the International Conference on Advanced Materials for Science and Engineering, 2016: 9-12.
|
17 |
VIKAS B, VAKULA D D. Performance comparison of MUSIC and ESPRIT algorithms in presence of coherent signals for DOA estimation[C]//Proc.of the International Conference of Electronics, Communication and Aerospace Technology, 2017: 403-405.
|
18 |
CHANG N, HONG X, WANG W J, et al.Joint delay and angle estimation for GNSS multipath signals based on spatial and frequential smoothing[C]//Proc.of the 14th IEEE International Conference on Signal Processing, 2018: 203-207.
|
19 |
DO V L, NGUYEN T B, DAO V K, et al. Direction finding in multipath environments using moving uniform circular arrays[C]//Proc.of the 3rd International Conference on Frontiers of Signal Processing, 2017: 50-54.
|
20 |
INOUE M , HAYASHI K , MORI H , et al. A DOA estimation method with kronecker subspace for coherent signals[J]. IEEE Communications Letters, 2018, 22 (11): 2306- 2309.
doi: 10.1109/LCOMM.2018.2870824
|
21 |
KIKUMA N, TANAKA K, SAKAKIBARA K. Performance improvement of localization of radio sources by using spatial smoothing processing in near-field DOA-matrix method with SAGE algorithm[C]//Proc.of the IEEE MTT-S International Conference on Microwaves for Intelligent Mobility, 2017: 127-130.
|
22 |
ONG L T. Experimental study on spatial smoothing direction of arrival estimation for coherent signals[C]//Proc.of the IEEE Region 10 Conference, 2016: 1411-1414.
|
23 |
FAN X, ZHOU C W, GU Y J, et al.Toeplitz matrix reconstruction of interpolated coprime virtual array for DOA estimation[C]//Proc.of the IEEE 85th Vehicular Technology Conference, 2017: 1-5.
|
24 |
WU X H , ZHU W P , YAN J . A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Trans.on Vehicular Technology, 2017, 66 (9): 8223- 8237.
doi: 10.1109/TVT.2017.2695226
|
25 |
CHENG X, WANG Y M. A reduced-complex method based on Toeplitz reconstruction for direction of arrival estimation in multiple-input multiple-output sonar[C]//Proc.of the OCEANS-MTS/IEEE Kobe Techno-Oceans, 2018: 1-6.
|
26 |
LIU X Z, SONG M Y, YANG Y H.An effective DOA estimation method of coherent signals based on reconstruct weighted noise subspace[C]//Proc.of the 29th Chinese Control and Decision Conference, 2017: 2218-2222.
|
27 |
WU Y F, CONG Y L, LI C H. DOA estimation of coherent signals based on matrix reconstruction[C]//Proc.of the International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010: 280-283.
|
28 |
游鸿, 黄建国, 金勇, 等. 基于加权信号子空间投影的MUSIC改进算法[J]. 系统工程与电子技术, 2008, 30 (5): 792- 794.
doi: 10.3321/j.issn:1001-506X.2008.05.003
|
|
YOU H , HUANG J G , JIN Y , et al. Improving MUSIC performance in snapshot deficient scenario via weighted signal-subspace projection[J]. Systems Engineering and Electronics, 2008, 30 (5): 792- 794.
doi: 10.3321/j.issn:1001-506X.2008.05.003
|
29 |
LI D , PAN Z C . The five-hundred-meter aperture spherical radio telescope project[J]. Radio Science, 2016, 51 (7): 1060- 1064.
doi: 10.1002/2015RS005877
|
30 |
SMITH S L, DUNNING A, SMART K W, et al. Performance validation of the 19-element multibeam feed for the five-hundred-metre aperture spherical radio telescope[C]//Proc.of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017: 2137-2138.
|