系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (1): 15-22.doi: 10.3969/j.issn.1001-506X.2020.01.03

• 电子技术 • 上一篇    下一篇

认知无线电中实现自适应压缩频谱感知

罗沅1(), 党娇娇1(), 宋祖勋1,2(), 王保平1,2()   

  1. 1. 西北工业大学电子信息学院, 陕西 西安 710072
    2. 西北工业大学无人机特种技术重点实验室, 陕西 西安 710065
  • 收稿日期:2019-05-06 出版日期:2020-01-01 发布日期:2019-12-23
  • 作者简介:罗沅(1988-),男,博士研究生,主要研究方向为认知无线电技术。E-mail:ztyjhly@163.com|党娇娇(1989-),女,博士研究生,主要研究方向为目标散射测量及外推算法。E-mail:15202442839@163.com|宋祖勋(1964-),男,研究员,博士,主要研究方向为无人机测控数据链、电磁兼容、微波通讯、电子系统仿真。E-mail:zxsong@nwpu.edu.cn|王保平(1964-),男,研究员,博士,主要研究方向为无人机遥感图像处理、雷达信号处理、雷达成像。E-mail:wbpluo@sina.com
  • 基金资助:
    国家自然科学基金(61472324)

Achieving adaptive compressive spectrum sensing for cognitive radio

Yuan LUO1(), Jiaojiao DANG1(), Zuxun SONG1,2(), Baoping WANG1,2()   

  1. 1. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China
    2. National Key Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi'an 710065, China
  • Received:2019-05-06 Online:2020-01-01 Published:2019-12-23
  • Supported by:
    国家自然科学基金(61472324)

摘要:

在实际生活中频谱通常是稀疏的,将压缩感知(compressed sensing,CS)技术运用到宽带频谱感知中具有很大优势。然而,实践中稀疏度通常是未知的,因此需要选择较大的测量数目,导致算法的感知性能下降。为解决这一问题,提出一种自适应压缩频谱感知方法,通过分析压缩测量的二阶导数与稀疏度之间的关系对稀疏度进行粗估计。在粗估计的基础上,逐步增加测量数并对训练子集与测试子集进行迭代计算,当满足停止准则时得到稀疏度的精确估计。仿真结果表明,所提方法在性能上优于现有的其他传统CS方法,对降低复杂度、减少存储空间等方面具有重要意义。此外还验证了所提方法在噪声环境中的有效性。

关键词: 认知无线电, 压缩感知, 宽带频谱感知, 稀疏度估计

Abstract:

The spectrum is sparse in the real world, and it has enormous advantages when applying compressed sensing (CS) technology to wideband spectrum sensing. However, the sparsity is often unknown in practice, so a large number of measurements have to be chosen, which will lead to the performance degradation. To solve this problem, an adaptive compressive spectrum sensing method is proposed. The coarse sparsity estimation can be obtained by analyzing the relationship between the second derivative of compressive measurements and sparsity. Then by increasing the number of measurements and continuing iterations step by step in both training subset and test subset, the accurate sparsity estimation can be obtained while the halting criterion can be met. Simulation shows that the performance of our method is better than other traditional CS methods, which is very important for decreasing the complexity and memory. Moreover, the effectiveness of the proposed method is also verified in noise environment.

Key words: cognitive radio, compressed sensing (CS), wideband spectrum sensing, sparsity order estimation

中图分类号: