系统工程与电子技术 ›› 2017, Vol. 39 ›› Issue (12): 2637-2645.doi: 10.3969/j.issn.1001-506X.2017.12.01
• 电子技术 • 下一篇
雷蕾1, 王晓丹1, 权文2, 罗玺3
LEI Lei1, WANG Xiaodan1, QUAN Wen2, LUO Xi3
摘要:
在纠错输出编码(error-correcting output code, ECOC)多类分类中,当待识别样本的真实类别不属于对应二类子类划分时,训练得到的基分类器将不具备对此类样本进行分类的能力,此时的基分类器在解码融合时面临着non-competence问题。如何衡量基分类器是否具备对样本的分类能力,以及如果不具备,如何减少此种情况下对分类效果的影响是基于ECOC多类分类面临的新问题。针对解码框架中non-competent基分类器的分类融合问题,提出一种基于基分类器对样本是否具有分类能力的加权解码方法。该方法利用支持向量数据描述衡量待识别样本与各划分子类之间的距离,同时利用加权解码,通过对基分类器权重的学习,进而增强对类别拥有分类能力的基分类器的影响,减少不具备分类能力的基分类器产生的误差。基于UCI数据集的实验表明所提方法的有效性和实用性。