系统工程与电子技术

• 传感器与信号处理 • 上一篇    下一篇

基于聚类字典学习和稀疏表示的SAR图像抑斑方法

刘春辉1,2, 齐越2, 丁文锐1   

  1. 1. 北京航空航天大学无人系统研究院, 北京 100191;
    2. 北京航空航天大学虚拟现实技术与系统国家重点实验室, 北京 100191
  • 出版日期:2017-07-25 发布日期:2010-01-03

SAR despeckling based on clustering dictionary learning andsparse representation

LIU Chunhui1,2, QI Yue2, DING Wenrui1   

  1. 1. Institute of Unmanned System, Beihang University, Beijing 100191, China;
    2. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
  • Online:2017-07-25 Published:2010-01-03

摘要:

针对合成孔径雷达(synthetic aperture radar, SAR)图像相干斑抑制问题,提出一种基于聚类字典学习和稀疏表示的SAR图像抑斑方法。本方法以相干斑噪声的非对数加性模型为基础,通过改进相似度测度的K-means聚类和主成分分析方法进行字典学习,克服了相干斑噪声非高斯性带来的影响,形成具有结构性聚类的字典原子;在稀疏分解方面,通过引入方差稳定因子,建立了适用于抑制SAR相干斑噪声的稀疏表示模型,并通过交替迭代算法进行代价方程求解;同时算法还增加了点目标保护措施,避免了对图像点目标“过滤波”。通过卫星、无人机SAR图像的抑斑实验证明,相比经典的SAR图像抑斑方法,所提的方法在抑斑的视觉效果上和客观评价指标上都有较大的提升。

Abstract:

Aiming at the speckle reduction of aperture radar synthetic (SAR) images, a method of SAR despeckling based on clustering dictionary learning and sparse representation is proposed. Based on the non-logarithmic model of the coherent speckle noise, the K-means clustering with the improved similarity measure and principal component analysis method, the dictionary atoms with structural clustering are obtained, which overcomes the effect of the non-Gaussian of the speckle noise. A sparse representation model combining clustering and sparsity under a unified framework is established. An iterative algorithm is proposed for solving the cost equation. Meanwhile, the point target protection measure is introduced into the algorithm to avoid the "over filtering" of the point target. Experimental results with SAR images from satellites and unmanned aerial vehicle show that compared with the existing SAR despeckling methods, the proposed method has a great improvement in both the visual effect and the objective evaluation indexes.