刘春辉1,2, 齐越2, 丁文锐1
LIU Chunhui1,2, QI Yue2, DING Wenrui1
摘要:
针对合成孔径雷达(synthetic aperture radar, SAR)图像相干斑抑制问题,提出一种基于聚类字典学习和稀疏表示的SAR图像抑斑方法。本方法以相干斑噪声的非对数加性模型为基础,通过改进相似度测度的K-means聚类和主成分分析方法进行字典学习,克服了相干斑噪声非高斯性带来的影响,形成具有结构性聚类的字典原子;在稀疏分解方面,通过引入方差稳定因子,建立了适用于抑制SAR相干斑噪声的稀疏表示模型,并通过交替迭代算法进行代价方程求解;同时算法还增加了点目标保护措施,避免了对图像点目标“过滤波”。通过卫星、无人机SAR图像的抑斑实验证明,相比经典的SAR图像抑斑方法,所提的方法在抑斑的视觉效果上和客观评价指标上都有较大的提升。