系统工程与电子技术

• 制导、导航与控制 • 上一篇    下一篇

大气层外动能拦截器末制导律与能量优化方法

郭建国1, 韩拓1, 周军1, 王国庆2   

  1. 1. 西北工业大学精确制导与控制研究所, 陕西 西安 710072;
    2. 中国运载火箭技术研究院研发中心, 北京 100076
  • 出版日期:2017-01-20 发布日期:2010-01-03

Terminal guidance law for exoatmospheric kill vehicle with energy optimization method

GUO Jianguo1, HAN Tuo1, ZHOU Jun1, WANG Guoqing2   

  1. 1. Institute of Precision Guidance and Control, Northwestern Polytechnical University, Xi’an 710072, China;
    2. Research and Development Center, China Academy of Launch Vehicle Technology, Beijing 100076, China
  • Online:2017-01-20 Published:2010-01-03

摘要:

针对大气层外动能拦截器的末制导问题,建立了包含发动机误差源的六自由度模型。在考虑目标机动加速度和拦截器状态估计误差的情况下,基于预测控制理论,提出了一种形式简单的增广预测制导律,并且采用李雅普诺夫第二方法证明了制导系统的渐近稳定性。针对拦截器能量优化问题,提出了一种基于序列二次规划(sequential quadratic programming, SQP)算法的拦截器能量优化方法。仿真结果表明,所设计的制导律和能量优化方法,能够在精确命中目标的同时,满足燃料消耗最小、发动机开关频率较小的要求。

Abstract:

A 6-degree of freedom (DOF) model of exoatmospheric kill vehicle (EKV) considering error source of the propulsion system is presented under the issue of designing terminal guidance law. Based on the predictive control theory, a new simple form of an augmented predictive guidance law considering the target acceleration and state estimation error of EKV is proposed, and the asymptotical stability of the guidance system is proved by using the Lyapunov’s second method. In order to minimize the fuel consumption of EKV, an energy optimization algorithm based on the sequential quadratic programming (SQP) is applied. The simulation results show that the guidance law and the energy optimization algorithm not only hit the target accurately, but also meet the requirements of the minimum fuel consumption and a lower switching frequency of the EKV engine.