摘要:
针对主成分分析(principal component analysis, PCA)等数据压缩方法用于雷达高分辨距离像(high resolution range profile, HRRP)的特征提取,只能反映固定方位帧内HRRP线性结构,而无法准确描述目标,导致识别性能下降的问题,提出了一种基于混合概率PCA的HRRP特征提取方法。该方法利用期望最大值(Expectation maximization, EM)算法求解HRRP的一、二阶统计参数,能够真实反映数据分布,以分布趋同的原则实现不同方位帧的聚类,减少模板数量。最后通过自适应高斯分类器和Kullback-Leibler距离分类器识别获取的统计特征,可进一步改善识别性能。仿真实验验证了该方法能够在降低数据维数的同时,实现HRRP统计特征的提取,能一定程度上削弱方位敏感性的影响。