系统工程与电子技术

• 可靠性 • 上一篇    下一篇

屏蔽数据下软件可靠性的极大似然估计

杨剑锋1,3, 赵明2,3   

  1. 1. 贵州大学计算机科学与信息学院, 贵州 贵阳 550025;
    2. 耶夫勒大学可持续发展技术学院, 瑞典 耶夫勒 80176;
    3. 贵州大学可靠性工程研究中心, 贵州 贵阳 550025
  • 出版日期:2013-12-24 发布日期:2010-01-03

Maximum likelihood estimation for software reliability with masked failure data

YANG Jian-feng1,3, ZHAO Ming2,3   

  1. 1. College of Computer Science & Information, Guizhou University, Guiyang 550025, China; 
    2. Faculty of Technology and Sustainable Development, University of Gvle, Gvle 80176, Sweden;  
    3. Reliability Engineering Center, Guizhou University, Guiyang 550025, China
  • Online:2013-12-24 Published:2010-01-03

摘要:

屏蔽数据是指引起系统失效的真实原因不得而知,即失效原因可能是系统组件的某个子集。一般地,屏蔽数据下非齐次泊松过程 (non-homogeneous Poisson process, NHPP)类软件可靠性叠加模型中参数的极大似然估计比较复杂,因为叠加模型不能分解成几个简单的NHPP模型。本文主要研究基于屏蔽数据下叠加模型中参数的极大似然估计,评估软件系统的可靠性。最后通过一组模拟数据,说明极大似然估计效果良好。

Abstract:

The masked data are the system failure data when the exact cause of the failures might be unknown. That is, it is the subset of components that causes system failures. In general, the maximum likelihood estimation (MLE) of parameters are difficult to find when the masked data exist, because the superposition nonhomogenous Poisson process (NHPP) software reliability model cannot be decomposed into independent NHPP models. In this paper, the MLE of software reliability with masked data is studied based on superposition NHPP models. Finally, a numerical example based on simulation data is given to illustrate the good performance of MLE.