Journal of Systems Engineering and Electronics ›› 2011, Vol. 33 ›› Issue (7): 1611-1616.doi: 10.3969/j.issn.1001-506X.2011.07.34

• 通信与网络 • 上一篇    下一篇

基于KPCA和LDA的信号调制识别

周欣, 吴瑛   

  1. 信息工程大学信息工程学院, 河南 郑州 450002
  • 出版日期:2011-07-19 发布日期:2010-01-03

Signal modulation recognition based on KPCA and LDA

ZHOU Xin, WU Ying   

  1. Institute of Information and Engineering, Information Engineering University, Zhengzhou 450002, China
  • Online:2011-07-19 Published:2010-01-03

摘要:

对信号的特征选择与分类问题进行研究,提出了一种基于核主分量分析(kernel principle component analysis, KPCA)和线性判别(linear discriminant analysis, LDA)分类器的信号调制识别算法。针对通信信号的特点,首先利用KPCA的方法对特征参数进行主分量组合,以消除信号特征间的相关性和压缩特征向量的维数,然后利用LDA分类器进行信号调制方式的自动识别。仿真表明,在一个较大的信噪比范围内当特征非线性可分时,KPCA在特征选择方面性能更优,且基于KPCA+LDA的识别方法精度高于主分量分析(principle component analysis, PCA)+模板匹配算法。通过分析还可得出,KPCA+LDA等价于基于核的Fisher判别分析(kernel Fisher discriminant analysis, KFDA)方法。

Abstract:

Aiming at the problem of signal feature selection and classification, an algorithm of kernel principle component analysis (KPCA) and linear discriminant analysis (LDA) classifier is brought forward. According to the characteristic of communication signals, first the eliminating correlation and dimensionality reduction for these feature parameters are realized using a KPCA approach. Then the automatic recognition of modulation signals is designed by the LDA classifier. Simulation result shows that over a wide range of signaltonoise ratio scenarios, KPCA has a high performance in nonlinear classified feature. The classification accuracy based on KPCA+LDA is higher than principle component analysis (PCA)+ template matching. Through analysis it can also be seen that the KPCA+LDA algorithm is equal to the method of kernel Fisher discriminant analysis (KFDA).