Journal of Systems Engineering and Electronics ›› 2011, Vol. 33 ›› Issue (7): 1611-1616.doi: 10.3969/j.issn.1001-506X.2011.07.34
周欣, 吴瑛
ZHOU Xin, WU Ying
摘要:
对信号的特征选择与分类问题进行研究,提出了一种基于核主分量分析(kernel principle component analysis, KPCA)和线性判别(linear discriminant analysis, LDA)分类器的信号调制识别算法。针对通信信号的特点,首先利用KPCA的方法对特征参数进行主分量组合,以消除信号特征间的相关性和压缩特征向量的维数,然后利用LDA分类器进行信号调制方式的自动识别。仿真表明,在一个较大的信噪比范围内当特征非线性可分时,KPCA在特征选择方面性能更优,且基于KPCA+LDA的识别方法精度高于主分量分析(principle component analysis, PCA)+模板匹配算法。通过分析还可得出,KPCA+LDA等价于基于核的Fisher判别分析(kernel Fisher discriminant analysis, KFDA)方法。