Journal of Systems Engineering and Electronics ›› 2010, Vol. 32 ›› Issue (6): 1225-1228.doi: 10.3969/j.issn.1001-506X.2010.06.025

• 系统工程 • 上一篇    下一篇

基于最小方差的动态综合评价方法及应用

郭亚军1,唐海勇1,2,曲道钢1   

  1. 1. 东北大学工商管理学院,  辽宁 沈阳 110004; 2. 宝钢发展有限公司, 上海 201900
  • 出版日期:2010-06-28 发布日期:2010-01-03

Dynamic comprehensive evaluation method and its application based on minimal variability

GUO Ya-jun1,TANG Hai-yong1,2,QU Dao-gang1   

  1. 1. School of Business Administration, Northeastern Univ., Shenyang 110004, China; 2. Baosteel Developing Co., Ltd., Shanghai 201900, China
  • Online:2010-06-28 Published:2010-01-03

摘要:

利用时序加权平均(time order weight averaging operator, TOWA)算子和时序几何平均(time order weighted geometric averaging operator, TOWGA)算子对时序立体数据进行降维处理,并给出了确定时间权重的最小方差法。在事先给定的时间度的情况下,尽可能地寻找一组最稳定的时间权重系数来集结样本值,即寻找一组时间权重系数使其波动最小。最后,运用该方法进行了算例分析,并且将算例结果与熵值规划法进行了比较分析,验证了方法的有效性,总结了最小方差法的特点。

Abstract:

Data dimension is decreased by using time order weighted averaging operator (TOWA) and time order weighted geometric averaging operator (TOWGA), then the minimal variability weighting vector method is introduced, which determines the minimal variability weighting vector under the given level of time orness. An example is also discussed to compare numerical results with entropy programming method and minimal variability weighting vector method, some conclusions are gained by comparison.