| 1 |
马越, 缪晨, 张若愚, 等. “低慢小”无人机雷达探测研究与展望[J]. 国防科技, 2023, 44 (5): 60- 66.
doi: 10.13943/j.issn1671-4547.2023.05.08
|
|
MA Y, MIAO C, ZHANG R Y, et al. Current status and future prospects of research on radar detection of “low, slow and small” drones[J]. National Defense Technology, 2023, 44 (5): 60- 66.
doi: 10.13943/j.issn1671-4547.2023.05.08
|
| 2 |
胥凤驰, 王伟, 李哲, 等. 水面无人艇系统的设计实现与未来展望[J]. 舰船科学技术, 2019, 41 (12): 39- 43.
doi: 10.3404/j.issn.1672-7649.2019.12.009
|
|
XU F C, WANG W, LI Z, et al. Design and realization of unmanned surface vessel system and its future prospects[J]. Ship Science and Technology, 2019, 41 (12): 39- 43.
doi: 10.3404/j.issn.1672-7649.2019.12.009
|
| 3 |
GINI F, GRECO M. Texture modelling estimation and validation using measured sea clutter data[J]. IEE Proceedings-Radar Sonar and Navigation, 2002, 149 (3): 115- 124.
doi: 10.1049/ip-rsn:20020272
|
| 4 |
CARRERA E V, LARA F, ORTIZ M, et al. Target detection using radar processors based on machine learning[C]//Proc. of the Technical and Scientific Conference of the Andean Council of the IEEE, 2020.
|
| 5 |
SHUI P L, LI D C, XU S W. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Trans. on Aerospace & Electronic Systems, 2014, 50(2): 1416−1430.
|
| 6 |
LI Y Z, XIE P C, TANG Z S, et al. SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (8): 1225- 1229.
doi: 10.1109/LGRS.2019.2894385
|
| 7 |
郭子薰, 水鹏朗, 白晓惠, 等. 海杂波中基于可控虚警K近邻的海面小目标检测[J]. 雷达学报, 2020, 9 (4): 654- 663.
doi: 10.12000/JR20055
|
|
GUO Z X, SHUI P L, BAI X H, et al. Sea-surface small target detection based on KNN with controlled false alarm rate in sea clutter[J]. Journal of Radars, 2020, 9 (4): 654- 663.
doi: 10.12000/JR20055
|
| 8 |
XU S W, ZHU J A, JIANG J Z, et al. Sea-surface floating small target detection by multifeature detector based on isolation forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14, 704- 715.
|
| 9 |
GUO Z X, SHUI P L. Anomaly based sea-surface small target detection using K-nearest neighbor classification[J]. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (6): 4947- 4964.
doi: 10.1109/TAES.2020.3011868
|
| 10 |
陈小龙, 饶桂林, 关键, 等. 被动雷达低慢小探测数据集(LSS-PR-1.0)及多域特征提取和分析方法[J]. 雷达学报, 2025, 14 (2): 249- 268.
doi: 10.12000/JR24145
|
|
CHEN X L, RAO G L, GUAN J, et al. Passive radar low slow small detection dataset (LSS-PR-1.0) and multi-domain feature extraction and analysis methods[J]. Journal of Radars, 2025, 14 (2): 249- 268.
doi: 10.12000/JR24145
|
| 11 |
XU Y Y, JIN L. Sea-surface floating small target detection based on SVM and multidimensional features[C]//Proc. of the IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, 2020: 453−457.
|
| 12 |
CHANG J Y, FU X J, ZHAO C X, et al. Distributed radar target detection based on RF-SSA in non-Gaussian noise[J]. Electronics, 2022, 11 (15): 2319.
doi: 10.3390/electronics11152319
|
| 13 |
BHATTACHARYA T K, HAYKIN S. Neural network-based radar detection for an ocean environment[J]. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33 (2): 408- 420.
doi: 10.1109/7.575874
|
| 14 |
PERDOCH J, GAZOVOVA S, PACEK M. An improved radar clutter suppression by simple neural network[J]. IET Radar, Sonar & Navigation, 2024, 18(2): 308−326.
|
| 15 |
苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7 (5): 565- 574.
doi: 10.12000/JR18077
|
|
SU N Y, CHEN X L, GUAN J, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radar, 2018, 7 (5): 565- 574.
doi: 10.12000/JR18077
|
| 16 |
苏宁远, 陈小龙, 关键, 等. 基于深度学习的海上目标一维序列信号目标检测方法[J]. 信号处理, 2020, 36 (12): 1987- 1997.
doi: 10.16798/j.issn.1003-0530.2020.12.004
|
|
SU N Y, CHEN X L, GUAN J, et al. One-dimensional sequence signal detection method for marine target based on deep learning[J]. Journal of Signal Processing, 2020, 36 (12): 1987- 1997.
doi: 10.16798/j.issn.1003-0530.2020.12.004
|
| 17 |
苏宁远, 陈小龙, 陈宝欣, 等. 雷达海上目标双通道卷积神经网络特征融合智能检测方法[J]. 现代雷达, 2019, 41 (10): 47- 52.
doi: 10.16592/j.cnki.1004-7859.2019.10.009
|
|
SU N Y, CHEN X L, CHEN B X, et al. Dual-channel convolutional neural networks feature fusion method for radar maritime target intelligent detection[J]. Modern Radar, 2019, 41 (10): 47- 52.
doi: 10.16592/j.cnki.1004-7859.2019.10.009
|
| 18 |
CHEN X L, SU N Y, HUANG Y, et al. False-alarm-controllable radar detection for marine target based on multi features fusion via CNNs[J]. IEEE Sensors Journal, 2021, 21 (7): 9099- 9111.
doi: 10.1109/JSEN.2021.3054744
|
| 19 |
SHI Y L, GUO Y X, YAO T T, et al. Sea-surface small floating target recurrence plots FAC classification based on CNN[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5115713.
|
| 20 |
WANG J G, LI S B. Maritime radar target detection in sea clutter based on CNN with dual-perspective attention[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 20, 3500405.
|
| 21 |
QU Q Z, LIU W J, WANG J X, et al. Enhanced CNN-based small target detection in sea clutter with controllable false alarm[J]. IEEE Sensors Journal, 2023, 23 (9): 10193- 10205.
doi: 10.1109/JSEN.2023.3259953
|
| 22 |
LIANG S Y, CHEN R, DUAN G, et al. Deep learning-based lightweight radar target detection method[J]. Journal of Real-Time Image Processing, 2023, 20 (4): 61- 71.
doi: 10.1007/s11554-023-01316-5
|
| 23 |
YAVUZ F. Radar target detection with CNN[C]//Proc. of the 29th European Signal Processing Conference, 2021: 1581−1585.
|
| 24 |
CHEN J, DU L, GUO G B, et al. Target-attentional CNN for radar automatic target recognition with HRRP[J]. Signal Processing, 2022, 196, 108497.
doi: 10.1016/j.sigpro.2022.108497
|
| 25 |
WANG L, TANG J, LIAO Q M. A study on radar target detection based on deep neural networks[J]. IEEE Sensors Letters, 2019, 3 (3): 7000504.
|
| 26 |
SHI Y L, CHEN W S. Sea surface target detection using global false alarm controllable adaptive boosting base on correlation features[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5103014.
|
| 27 |
WANG J G, LI S B. SALA-LSTM: a novel high-precision maritime radar target detection method based on deep learning[J]. Scientific Reports, 2023, 13 (1): 12125- 12139.
doi: 10.1038/s41598-023-39348-3
|
| 28 |
BAIRD Z, MCDONALD M K, RAJAN S, et al. A CNN-LSTM network for augmenting target detection in real maritime wide area surveillance radar data[J]. IEEE Access, 2020, 8, 179281- 179294.
doi: 10.1109/ACCESS.2020.3025144
|
| 29 |
赵迪, 行鸿彦, 王海峰, 等. 基于SAE-GA-XGBoost算法的海面小目标检测[J]. 雷达科学与技术, 2023, 21 (1): 88- 96.
doi: 10.3969/j.issn.1672-2337.2023.01.011
|
|
ZHAO D, XING H Y, WANG H F, et al. Sea-surface small target detection based on SAE-GA-XGBoost algorithm[J]. Radar Science and Technology, 2023, 21 (1): 88- 96.
doi: 10.3969/j.issn.1672-2337.2023.01.011
|
| 30 |
汪翔, 汪育苗, 陈星宇, 等. 基于深度学习的多特征融合海面目标检测方法[J]. 雷达学报, 2024, 13 (3): 554- 564.
doi: 10.12000/JR23105
|
|
WANG X, WANG Y M, CHEN X Y, et al. Deep learning-based marine target detection method with multiple feature fusion[J]. Journal of Radars, 2024, 13 (3): 554- 564.
doi: 10.12000/JR23105
|