系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4012-4023.doi: 10.12305/j.issn.1001-506X.2025.12.02

• 电子技术 • 上一篇    

自监督特征相似度表征的恒虚警检测方法

项厚宏1,*, 马宏伟2, 余海军1, 陈毓锋3, 王凤玉4, 曾小路5   

  1. 1. 合肥工业大学计算机与信息学院,安徽 合肥 230009
    2. 北京无线电测量研究所 北京 100854
    3. 西安电子科技大学杭州研究院,浙江 杭州 311200
    4. 北京邮电大学人工智能学院 北京 100876
    5. 北京理工大学信息与电子学院,北京 100081
  • 收稿日期:2024-11-13 修回日期:2025-02-19 出版日期:2025-04-14 发布日期:2025-04-14
  • 通讯作者: 项厚宏
  • 作者简介:马宏伟(1985—),男,高级工程师,硕士,主要研究方向为雷达系统设计、雷达信号处理
    余海军(2004—),男,主要研究方向为智能雷达信号处理
    陈毓锋(1994—),男,副研究员,博士,主要研究方向为雷达通信一体化、分布式波形设计、杂波抑制
    王凤玉(1992—),女,讲师,博士,主要研究方向为智能信号处理、无线人工智能
    曾小路(1991—),男,副研究员,博士,主要研究方向智能无线感知与物联网、复杂环境目标探测与感知
  • 基金资助:
    国家自然科学基金(62201189);安徽省重点研究与开发计划(2023z04020018);中央高校基本科研业务费专项资金(JZ2024HGTB0228);雷达信号处理全国重点实验室基金;西安电子科技大学杭州研究院院士工作站基金资助课题

Constant false alarm rate detection method for self-supervised feature similarity representation

Houhong XIANG1,*, Hongwei MA2, Haijun YU1, Yufeng CHEN3, Fengyu WANG4, Xiaolu ZENG5   

  1. 1. School of Computer and Information,Hefei University of Technology,Hefei 230009,China
    2. Beijing Institute of Radio Measurement,Beijing 100854,China
    3. Hangzhou Institute of Technology,Xidian University,Hangzhou 311200,China
    4. School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China
    5. School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China
  • Received:2024-11-13 Revised:2025-02-19 Online:2025-04-14 Published:2025-04-14
  • Contact: Houhong XIANG

摘要:

对于弱小目标检测问题,基于功率参数特征的恒虚警率(constant false-alarm rate,CFAR)算法的检测性能受限于目标回波信号的信噪比(signal-to-noise ratio,SNR),如何挖掘功率参数以外更为丰富的特征并表征目标,实现更远距离的弱小目标检测是研究重点。对此,提出一种自监督特征相似度表征的CFAR检测方法。构建一个双端口深度网络特征提取模型,充分挖掘片段化的信号及其自身旋转信号的特征并以相似度参数表征。通过最大化目标空间和无目标空间的相似度参数空间距离,得到最优的特征提取与参数表征模型。最后,通过数值统计计算CFAR条件下的相似度参数检测门限。仿真数据和多种频段的雷达实测数据处理结果表明,在CFAR要求下,所提方法较CFAR检测算法和多种大数据处理算法而言,对未知回波信号参数和未知背景噪声分布特征具有较高的泛化性,其等效SNR改善了3 dB,具有更高的检测性能。

关键词: 弱小目标检测, 恒虚警率检测, 相似性表征, 雷达信号处理

Abstract:

For the problem of weak target detection, the detection performance of the constant false alarm rate (CFAR) algorithm based on power parameter features is limited by the signal-to-noise ratio (SNR) of the target echo signal. How to mine richer features beyond power parameters to characterize the target and achieve weak target detection at longer distances is the focus. In regard to this, a CFAR detection method based on self-supervised feature similarity representation is proposed. A dual-port deep network feature extraction model is constructed to fully mine the features of fragmented signals and their own rotated signals and represent them with similarity parameters. By maximizing the spatial distance of similarity parameters between the target space and the target-free space, the optimal feature extraction and parameter representation model is obtained. Finally, the similarity parameter detection threshold under the CFAR condition is calculated through numerical statistics. The results of processing simulation data and radar measured data in multiple frequency bands show that, with the requirement of CFAR, compared to the CFAR detection algorithm and various big data processing algorithms, the proposed method has higher generalization ability to unknown echo signal parameters and unknown background noise distribution characteristics, with an equivalent SNR improvement of 3 dB, has higher detection performance.

Key words: weak target detection, constant false alarm rate (CFAR) detection, similarity representation, radar signal processing

中图分类号: