系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3655-3662.doi: 10.12305/j.issn.1001-506X.2025.11.14

• 系统工程 • 上一篇    

基于麻雀搜索算法优化BP神经网络的飞机停放局部温度预测

何宇珩1(), 袁宏杰1,*, 李贺2, 李直声3   

  1. 1. 北京航空航天大学可靠性与系统工程学院,北京 100191
    2. 中国航空综合技术研究所,北京 100028
    3. 四川凌峰航空液压机械有限公司,四川 广汉 618000
  • 收稿日期:2025-03-11 出版日期:2025-11-25 发布日期:2025-12-08
  • 通讯作者: 袁宏杰 E-mail:zy2314108@buaa.edu.cn
  • 作者简介:何宇珩(2001—),男,硕士研究生,主要研究方向为可靠性环境试验
    李 贺(1993—),男,工程师,硕士,主要研究方向为装备环境工程
    李直声(1981—),女,高级工程师,硕士,主要研究方向为高可靠性传感器技术、智能诊断系统

Local temperature prediction for aircraft parking based on BP neural network optimized by sparrow search algorithm

Yuheng HE1(), Hongjie YUAN1,*, He LI2, Zhisheng LI3   

  1. 1. School of Reliability and Systems Engineering,Beihang University,Beijing 100191,China
    2. China Aero-Polytechnology Establishment,Beijing 100028,China
    3. Sichuan Lingfeng Aero-Hydraulic Machinery Company Limited?,Guanghan 618000,China
  • Received:2025-03-11 Online:2025-11-25 Published:2025-12-08
  • Contact: Hongjie YUAN E-mail:zy2314108@buaa.edu.cn

摘要:

为准确预计飞机内部环境温度,从而提供更精确的输入完善机载设备环境适应性设计和试验验证流程,提出基于麻雀搜索算法的反向传播(sparrow search algorithm-back propagation,SSA-BP)神经网络模型的飞机内部温度预测方法。用卡尔曼滤波对输入的环境变量数据进行处理以减少噪声的影响,在相关性分析和考虑热惯性的影响的基础上构建用于温度预测的BP神经网络,同时使用SSA来对其进行优化。通过平均绝对误差可知SSA-BP模型的预测精度高于随机森林模型和高斯过程回归模型,实际预测结果的最大误差不大于3 ℃,均方根误差平均值为0.297 8 ℃。结果说明SSA-BP模型具备准确预测飞机内部环境温度的能力,可用于飞机停放局部温度预测工作,为确定机载设备环境适应性要求提供参考。

关键词: 飞机停放, 麻雀搜索算法, 热惯性, 温度预测

Abstract:

To accurately predict the internal temperature of the aircraft and provide more precise inputs to improve the environmental adaptability design and experimental verification process of airborne equipment, a method for predicting the internal temperature of the aircraft the sparrow search algorithm-back propagation (SSA-BP) neural network model is proposed. Process the input environmental variable data using Kalman filtering to reduce the influence of noise, construct a BP neural network for temperature prediction based on correlation analysis and consideration of thermal inertia, and optimize it using SSA. According to the average absolute error, the prediction accuracy of SSA-BP model is higher than that of random forest (RF) model and Gaussian process regression (GPR) model. The maximum error of the actual prediction results is no more than 3 ℃, and the average root mean square error is 0.297 8 ℃. The results show that ssa-bp model has the ability to accurately predict the internal ambient temperature of aircraft, and can be used to predict the local temperature of aircraft parking, which provides a reference for determining the environmental adaptability requirements of airborne equipment.

Key words: aircraft parking, sparrow search algorithm (SSA), thermal inertia, temperature prediction

中图分类号: