| 1 |
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on Antennas and Propagation, 1986, 34 (3): 276- 280.
doi: 10.1109/TAP.1986.1143830
|
| 2 |
HAYKIN S, GREENLAY T, LITVA J. Performance evaluation of the modified FBLP method for angle of arrival estimation using real radar multipath data[J]. Communications, Radar and Signal Processing, 1985, 132 (3): 159- 174.
|
| 3 |
SHAN T J, WAX M, KAILATH T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1985, 33 (4): 806- 811.
doi: 10.1109/TASSP.1985.1164649
|
| 4 |
RAO B D, HARI K V S. Weighted subspace methods and spatial smoothing: analysis and comparison[J]. IEEE Trans. on Signal Processing, 1993, 41 (2): 788- 803.
doi: 10.1109/78.193218
|
| 5 |
ROY R, KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37 (7): 984- 995.
doi: 10.1109/29.32276
|
| 6 |
KUMAR A A, ZHANG D Y, LIN Z P, et al. Direction finding and multipath mitigation using single antenna[C]//Proc. of the IEEE International Symposium on Circuits and Systems, 2018.
|
| 7 |
WANG Y L, CHEN H, PENG Y N, et al. Spatial spectrum estimation theory and algorithm[M]. Beijing: Tsinghua University Press, 2004.
|
| 8 |
PAN J J, SUN M, WANG Y D, et al. Simplified spatial smoothing for DOA estimation of coherent signals[J]. IEEE Trans. on Circuits and Systems II: Express Briefs, 2022, 70 (2): 841- 845.
|
| 9 |
ZHAGYPAR R, ZHAGYPAROVA K, AKHTAR M T. Spatially smoothed TF-root-MUSIC for DOA estimation of coherent and non-stationary sources under noisy conditions[J]. IEEE Access, 2021, 9, 95754- 95766.
doi: 10.1109/ACCESS.2021.3095345
|
| 10 |
YOU C Y, ZHANG D H. Research on DOA estimation based on spatial smoothing algorithm and optimal smoothing times[C]//Proc. of the IEEE International Conference on Data Science and Computer Application, 2021: 824−829.
|
| 11 |
TIAN G G, ZHAO C L, LI J X, et al. The DOA estimation method based on improved SSMUSIC algorithm[C]//Proc. of the 3rd China International SAR Symposium, 2022.
|
| 12 |
WANG K D, SHI L, CHEN T. Two-dimensional separable gridless direction-of-arrival estimation based on finite rate of innovation[J]. IEEE Access, 2021, 9, 17275- 17283.
doi: 10.1109/ACCESS.2021.3054660
|
| 13 |
QI B B.. DOA estimation of the coherent signals using beamspace matrix reconstruction[J]. Signal Processing, 2022, 191, 108349.
doi: 10.1016/j.sigpro.2021.108349
|
| 14 |
高世伟, 保铮. 利用数据矩阵分解实现对空间相关信号源的超分辨处理[J]. 通信学报, 1988, 9 (1): 4- 13.
|
|
GAO S W, BAO Z. Using data matrix decomposition to achieve super resolution processing of spatial correlation signal sources[J]. Journal of Communications, 1988, 9 (1): 4- 13.
|
| 15 |
YOU Z Y, HU G P, ZHOU H M, er al. Joint estimation method of DOD and DOA of bistatic coprime array MIMO radar for coherent targets based on low-rank matrix reconstruction[J]. Sensors, 2022, 22 (12): 4625.
doi: 10.3390/s22124625
|
| 16 |
VIBERG M, OTTERSTEN B, KAILATH T. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Trans. on Signal Processing, 1991, 39 (11): 2436- 2449.
doi: 10.1109/78.97999
|
| 17 |
CHEN Q, LIU R L. On the explanation of spatial smoothing in MUSIC algorithm for coherent sources[C]//Proc. of the International Conference on Information Science and Technology, 2011: 699−702.
|
| 18 |
王鸿帧, 郑桂妹, 陈晨, 等. 米波雷达低仰角估计技术分析与展望[J]. 火力与指挥控制, 2023, 48 (11): 6- 16.
doi: 10.3969/j.issn.1002-0640.2023.11.002
|
|
WANG H Z, ZHENG G M, CHEN C, et al. Analysis and prospect of VHF radar low elevation angle estimation technology[J]. Fire Control & Command Control, 2023, 48 (11): 6- 16.
doi: 10.3969/j.issn.1002-0640.2023.11.002
|
| 19 |
RAIGURU P, ROUT S K, SAHANI M, et al. Machine learning aided sparse direction of arrival estimation[J]. IEEE Sensors Journal, 2024, 24 (22): 38125- 38134.
doi: 10.1109/JSEN.2024.3453996
|
| 20 |
PAVEL S R, CHOWDHURY M W T S, ZHANG Y D, et al. Machine learning-based direction-of-arrival estimation exploiting distributed sparse arrays[C]//Proc. of the 55th Asilomar Conference on Signals, Systems, and Computers, 2021: 241−245.
|
| 21 |
MASSIMO D, VIANI F, ROCCA P, et al. An innovative multiresolution approach for DOA estimation based on a support vector classification[J]. IEEE Trans. on Antennas and Propagation, 2009, 57 (8): 2279- 2292.
doi: 10.1109/TAP.2009.2024485
|
| 22 |
RAHMAN S, MANDALAM Y, ADHIKARI K. Performance analysis of SVM-based DOA estimation for uniform linear arrays[C]//Proc. of the IEEE 14th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, 2023: 339−345.
|
| 23 |
AL KASSIR H, KANTARTZIS N V, LAZARIDIS P I, et al. Improving DOA Estimation via an optimal deep residual neural network classifier on uniform linear arrays[J]. IEEE Open Journal of Antennas and Propagation, 2024, 5 (2): 460- 473.
doi: 10.1109/OJAP.2024.3362061
|
| 24 |
WU Z H, WANG J, ZHOU Z Q. Two-dimensional coherent polarization-direction-of-arrival estimation based on sequence-embedding fusion transformer[J]. Remote Sensing, 2024, 16 (21): 3977.
doi: 10.3390/rs16213977
|
| 25 |
GUO Y, ZHANG Z, HUANG Y H. Dual class token vision transformer for direction of arrival estimation in low SNR[J]. IEEE Signal Processing Letters, 2023, 31, 76- 80.
|
| 26 |
ZHANG Y H, ZENG R, ZHANG S C, et al. Complex-valued neural network with multi-step training for single-snapshot DOA estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21, 1- 5.
|
| 27 |
刘其有, 何瑞, 施伟. 基于深度学习的波达方向估计方法综述[J]. 中国电子科学研究院学报, 2025, 20(1): 1−9.
|
|
LIU Q Y, HE R, SHI W. A survey on direction of arrival estimation methods based on deep learning[J]. Journal of China Academy of Electronics and Information Technology, 2025, 20(1): 1−9.
|
| 28 |
王鸿帧, 郑桂妹, 宋玉伟. 基于深度学习的米波雷达低仰角估计方法[J]. 现代雷达, 2022, 44 (12): 15- 24.
|
|
WANG H Z, ZHENG G M, SONG Y W. Deep learning-based VHF radar low elevation angle estimation method[J]. Modern Radar, 2022, 44 (12): 15- 24.
|
| 29 |
WU L, LIU Z M, HUANG Z T. Deep convolution network for direction of arrival estimation with sparse prior[J]. IEEE Signal Process Letters, 2019, 26 (11): 1688- 1692.
doi: 10.1109/LSP.2019.2945115
|
| 30 |
QIN Y H. Deep networks for direction of arrival estimation with sparse prior in low SNR[J]. IEEE Access, 2023, 11, 44637- 44648.
doi: 10.1109/ACCESS.2023.3273126
|
| 31 |
MERKOFER J P, REVACH G, SHLEZINGER N, et al. DA-MUSIC: data-driven DoA estimation via deep augmented MUSIC algorithm[J]. IEEE Trans. on Vehicular Technology, 2023, 73 (2): 2771- 2785.
|
| 32 |
CHEN P, CHEN Z M, LIU L, et al. SDOA-Net: an efficient deep learning-based DOA estimation network for imperfect array[J]. IEEE Trans. on Instrumentation and Measurement, 2024, 73
|
| 33 |
CHEN D W, SHI S, GU X M, et al. Robust DoA estimation using denoising autoencoder and deep neural networks[J]. IEEE Access, 2022, 10, 52551- 52564.
doi: 10.1109/ACCESS.2022.3164897
|
| 34 |
YAO Y Y, LEI H, HE W J. A-CRNN-based method for coherent DOA estimation with unknown source number[J]. Sensors, 2020, 20 (8): 2296.
doi: 10.3390/s20082296
|
| 35 |
LIU Z M, ZHANG C, YU P S. Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections[J]. IEEE Trans. on Antennas and Propagation, 2018, 66 (12): 7315- 7327.
doi: 10.1109/TAP.2018.2874430
|
| 36 |
XIANG H H, CHEN B X, YANG T, et al. Phase enhancement model based on supervised convolutional neural network for coherent DOA estimation[J]. Applied Intelligence, 2020, 50, 2411- 2422.
doi: 10.1007/s10489-020-01678-4
|
| 37 |
XIANG H H, CHEN B X, YANG M L, et al. Angle separation learning for coherent DOA estimation with deep sparse prior[J]. IEEE Communications Letters, 2021, 25 (2): 465- 469.
doi: 10.1109/LCOMM.2020.3032733
|
| 38 |
SAVARGAONKAR M, OYEWOLE I, CHEHADE A, et al. Uncorrelated sparse autoencoder with long short-term memory for state-of-charge estimations in lithium-ion battery cells[J]. IEEE Trans. on Automation Science and Engineering, 2024, 21 (1): 15- 26.
doi: 10.1109/TASE.2022.3222759
|
| 39 |
刘恺忻, 付进, 邹男, 等. 利用协方差矩阵拟合的阵列孔径扩展方法[J]. 声学学报, 2023, 48 (5): 911- 919.
|
|
LIU K X, FU J, ZOU N, et al. Array aperture extension method using covariance matrix fitting[J]. Acta Acustica, 2023, 48 (5): 911- 919.
|