1 |
XU Z W , HAN G J , LIU L , et al. A lightweight specific emitter identification model for ⅡoT devices based on adaptive broad learning[J]. IEEE Trans. on Industrial Informatics, 2023, 19 (5): 7066- 7075.
doi: 10.1109/TII.2022.3206309
|
2 |
陈翔, 汪连栋, 许雄, 等. 基于Raw I/Q和深度学习的射频指纹识别方法综述[J]. 雷达学报, 2023, 12 (1): 214- 234.
|
|
CHEN X , WANG L D , XU X , et al. A review of radio frequen cy fingerprinting methods based on Raw I/Q and deep learning[J]. Journal of Radars, 2023, 12 (1): 214- 234.
|
3 |
FANG Y Y , WEI S , ZHAO Y , et al. Radar-specific emitter identification with only envelope power based on multidimensional complex noncentral Chi-square classifier[J]. IEEE Sensors Journal, 2023, 23 (17): 20223- 20235.
doi: 10.1109/JSEN.2023.3298352
|
4 |
HE B X , WANG F G . Specific emitter identification via sparse Bayesian learning versus model-agnostic meta-learning[J]. IEEE Trans. on Information Forensics and Security, 2023, 18, 3677- 3691.
doi: 10.1109/TIFS.2023.3287073
|
5 |
韦建宇, 俞璐. 通信辐射源个体识别中的特征提取方法综述[J]. 通信技术, 2022, 55 (6): 681- 687.
|
|
WEI J Y , YU L . Overview of radio frequency fingerprint extraction in communication specific emitter identification[J]. Communications Technology, 2022, 55 (6): 681- 687.
|
6 |
TAN K W , YAN W J , ZHANG L M , et al. Semi-supervised specific emitter identification based on bispectrum feature extraction CGAN in multiple communication scenarios[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (1): 292- 310.
doi: 10.1109/TAES.2022.3184619
|
7 |
YING W W, DENG P F, HONG S H. Channel attention mechanism -based multi-feature fusion network for specific emitter identification[C]// Proc. of the IEEE 4th International Conference on Civil Aviation Safety and Information Technology, 2022: 1325-1328.
|
8 |
DUDCZYK J , KAWALEC A . Fractal features of specific emi-tter identification[J]. Acta Physica Polonica A, 2013, 124 (3): 406- 409.
doi: 10.12693/APhysPolA.124.406
|
9 |
HUANG Y L, ZHENG H. Radio frequency fingerprinting based on the constellation errors[C]//Proc. of the 18th Asia-Pacific Conference on Communications, 2012: 900-905.
|
10 |
PAN Y W, PENG H, LI T Y, et al. High-fidelity symbol synchronization for specific emitter identification[C]//Proc. of the IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, 2019: 393-398.
|
11 |
PENG Y , LIU P F , WANG Y , et al. Radio frequency fingerprint identification based on slice integration cooperation and heat constellation trace figure[J]. IEEE Wireless Communications Letters, 2022, 11 (3): 543- 547.
doi: 10.1109/LWC.2021.3135932
|
12 |
SHEN G X , ZHANG J Q , MARSHALL A , et al. Towards scalable and channel-robust radio frequency fingerprint identification for LoRa[J]. IEEE Trans. on Information Forensics and Security, 2022, 17, 774- 787.
doi: 10.1109/TIFS.2022.3152404
|
13 |
SATIJA U , TRIVEDI N , BISWAL G , et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Trans. on Information Forensics and Security, 2019, 14 (3): 581- 591.
doi: 10.1109/TIFS.2018.2855665
|
14 |
HAN G J , XU Z W , ZHU H B , et al. A two-stage model based on a complex-valued separate residual network for cross-domain ⅡoT devices identification[J]. IEEE Trans. on Industrial Informatics, 2024, 20 (2): 2589- 2599.
doi: 10.1109/TII.2023.3296871
|
15 |
ZHA X , CHEN H , LI T Y , et al. Specific emitter identification based on complex Fourier neural network[J]. IEEE Communications Letters, 2022, 26 (3): 592- 596.
doi: 10.1109/LCOMM.2021.3135378
|
16 |
ZHA H R , WANG H H , FENG Z M , et al. LT-SEI: long-tailed specific emitter identification based on decoupled representation learning in low-resource scenarios[J]. IEEE Trans. on Intelligent Transportation Systems, 2024, 25 (1): 929- 943.
doi: 10.1109/TITS.2023.3308716
|
17 |
LIU Z M . Multi-feature fusion for specific emitter identification via deep ensemble learning[J]. Digital Signal Processing, 2021, 110, 102939.
doi: 10.1016/j.dsp.2020.102939
|
18 |
FAN R , SI C K , HAN Y , et al. RFFsNet-SEI: a multidimensional balanced-RFFs deep neural network framework for specific emitter identification[J]. Journal of Systems Engineering and Electronics, 2023, 35 (3): 558- 574.
|
19 |
ZHANG X L , LI T Y , GONG P , et al. Variable-modulation specific emitter identification with domain adaptation[J]. IEEE Trans. on Information Forensics and Security, 2022, 18, 380- 395.
|
20 |
ZHANG T T, REN P Y, REN Z Y. Deep radio fingerprint ResNet for reliable lightweight device identification[C]//Proc. of the IEEE 94th Vehicular Technology Conference, 2021.
|
21 |
MCGINTHY J M , WONG L J , MICHAELS A J . Groundwork for neural network-based specific emitter identification authentication for IoT[J]. IEEE Internet of Things Journal, 2019, 6 (4): 6429- 6440.
doi: 10.1109/JIOT.2019.2908759
|
22 |
PEGGS C S, JACKSON T S, TITTLEBAUGH A N, et al. Preamble-based RF-DNA fingerprinting under varying temperatures[C]//Proc. of the 12th Mediterranean Conference on Embedded Computing, 2023.
|
23 |
SUN L T , WANG X , YANG A F , et al. Radio frequency fingerprint extraction based on multi-dimension approximate entropy[J]. IEEE Signal Processing Letters, 2020, 27, 471- 475.
doi: 10.1109/LSP.2020.2978333
|
24 |
袁英俊. 通信辐射源个体识别关键技术研究[D]. 长沙: 国防科技大学, 2014
|
|
YUAN Y J. Research on key technologies of communication emitter identification[D]. Changsha: National University of Defense Technology, 2014.
|
25 |
ZHANG J Q , RAJENDRAN S , SUN Z , et al. Physical layer security for the internet of things: authentication and key ge-neration[J]. IEEE Wireless Communications, 2019, 26 (5): 92- 98.
doi: 10.1109/MWC.2019.1800455
|
26 |
SUN L T , WANG X , ZHAO Y R , et al. Intrinsic low-di men sional nonlinear manifold structure of radio frequency signals[J]. IEEE Communications Letters, 2022, 26 (9): 2185- 2189.
doi: 10.1109/LCOMM.2022.3173990
|
27 |
DENG S Y , HUANG Z T , WANG X , et al. Radio frequency fingerprint extraction based on multidimension permutation entropy[J]. International Journal of Antennas and Propagation, 2017, 2017, 1538728.
|
28 |
朱胜利. 混沌信号处理在辐射源个体识中的应用研究[D]. 成都: 电子科技大学, 2018.
|
|
ZHU S L. Research on applications of chaotic signal processing in specific emitter identification[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
|
29 |
CARROLL T L . A nonlinear dynamics method for signal identification[J]. Chaos, 2007, 17 (2): 023109.
doi: 10.1063/1.2722870
|
30 |
YUAN Y J, HUANG Z T, WANG F H, et al. Radio specific emitter identification based on nonlinear characteristics of signal[C]// Proc. of the IEEE International Black Sea Conference on Communications and Networking, 2015: 77-81.
|
31 |
POVINELLI R J , JOHNSON M T , LINDGREN A C , et al. Statistical models of reconstructed phase spaces for signal cla-ssification[J]. IEEE Trans. on Signal Processing, 2006, 54 (6): 2178- 2186.
doi: 10.1109/TSP.2006.873479
|
32 |
CARROLL T L . Phase space method for identification of driven nonlinear systems[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2009, 19 (3): 033121.
doi: 10.1063/1.3207836
|
33 |
吴龙文. 脉冲体制辐射源无意调制特征分析及个体识别[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
WU L W. Research on unintentional modulation feature analysis and identification of specific pulsed emitter[D]. Harbin: Harbin Institute of Technology, 2020.
|
34 |
SUN L T , WANG X , HUANG Z T . Unintentional modulation evaluation in time domain and frequency domain[J]. Chinese Journal of Aeronautics, 2022, 35 (4): 376- 389.
doi: 10.1016/j.cja.2021.05.013
|
35 |
HE B X , WANG F G . Cooperative specific emitter identification via multiple distorted receivers[J]. IEEE Trans. on Information Forensics and Security, 2020, 15, 3791- 3806.
doi: 10.1109/TIFS.2020.3001721
|
36 |
FADUL M K M , REISING D R , SARTIPI M . Identification of OFDM-based radios under Rayleigh fading using RF-DNA and deep learning[J]. IEEE Access, 2021, 9, 17100- 17113.
doi: 10.1109/ACCESS.2021.3053491
|